油壓電磁閥符號的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

油壓電磁閥符號的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦吳曉明寫的 現代機械設計手冊:單行本氣壓傳動與控制設計(第二版) 和高殿榮的 現代機械設計手冊:單行本液壓傳動與控制設計(第二版)都 可以從中找到所需的評價。

另外網站方向閥-武漢機械股份有限公司 - Winner Hydraulics也說明:作動 類別 主訂購代號 流量 (l/min) 壓力 (bar) 成型孔 6 ports 四口三位. 先導切換 DC‑61A‑6E‑27‑Z 40‑50 350 61A‑6 4 ports 手動旋轉. 四口二位 DR‑10W‑4A‑Y‑Z 11 240 10W‑4 6 ports 四口三位. 先導切換 DC‑61A‑6E‑26 28‑40 350 61A‑6

這兩本書分別來自化學工業出版社 和化學工業所出版 。

國立嘉義大學 生物機電工程學系 艾群所指導 林意庭的 履帶式植保機器人之行走性能測試 (2021),提出油壓電磁閥符號關鍵因素是什麼,來自於履帶式植保機器人、性能測試、靜態翻覆角、GPS路徑。

而第二篇論文國立臺北科技大學 車輛工程系 陳志鏗所指導 徐暐捷的 液壓煞車硬體迴路模擬於車輛穩定控制發展之研究 (2021),提出因為有 車輛穩定性控制、硬體在環迴路(HIL)、電控液壓煞車、實時計算環境的重點而找出了 油壓電磁閥符號的解答。

最後網站方向控制閥- Directional Control Valves則補充:直流電磁閥採用已有定評的K系列電磁線圈。 ☆K系列的三大優點☆ ... 油壓符號. 項目. 規格. 供給電壓範圍. 10~30 VDC. 最大負載電流. 黑色(2/4). 反應頻率.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了油壓電磁閥符號,大家也想知道這些:

現代機械設計手冊:單行本氣壓傳動與控制設計(第二版)

為了解決油壓電磁閥符號的問題,作者吳曉明 這樣論述:

一部順應“中國製造2025”智慧裝備新要求、技術先進、資料可靠的現代化機械設計工具書,從新時代機械設計人員的實際需求出發,追求現代感,兼顧實用性、通用性,準確性,涵蓋了各種常規和通用的機械設計技術資料,貫徹了新的國家及行業標準,推薦了國內外先進、智慧、節能、通用的產品。

履帶式植保機器人之行走性能測試

為了解決油壓電磁閥符號的問題,作者林意庭 這樣論述:

本研究針對先前研發之輪式植保機器人進行改善,因輪式植保機器人在移動地形較多限制且接觸面積小,不利於地力複雜之地面行走,考量到田間工作環境多為非平坦地面,如行駛在泥土地或砂質地,容易使輪子陷入土裡造成自走車傾斜或打滑,所以重新設計一履帶式植保機器人。本研究重新設計出履帶式植保機器人,參考現有農機性能測定項目,進而制定履帶車性能測試之方法,藉由對機器人進行行走性能測試,來了解植保機器人對地形的適應力,此外,針對GPS路徑規劃功能進行誤差距離的量測,最後觀察在實際溫室場域的運作狀況。經過性能測試,履帶式植保機器人在左右兩側之靜態翻覆角右側為35.7±0.6度;左側翻覆角為34.3±0.6度;水泥地

與泥土地的打滑率為2.71±0.18%與3.24±0.63%;續航力表現為8小時9分。在GPS路徑規劃誤差距離試驗中,當移動速度為0.9 km/hr,在水泥地與泥土地的誤差距離為6.7±2.9公分與7.2±3.2公分。

現代機械設計手冊:單行本液壓傳動與控制設計(第二版)

為了解決油壓電磁閥符號的問題,作者高殿榮 這樣論述:

一部順應“中國製造2025”智慧裝備新要求、技術先進、資料可靠的現代化機械設計工具書,從新時代機械設計人員的實際需求出發,追求現代感,兼顧實用性、通用性,準確性,涵蓋了各種常規和通用的機械設計技術資料,貫徹了新的國家及行業標準,推薦了國內外先進、智慧、節能、通用的產品。 第20篇 液壓傳動與控制設計 第1章 常用基礎標準、圖形符號和常用術語 1.1基礎標準20-3 1.1.1液壓氣壓系統及元件的公稱壓力系列20-3 1.1.2液壓泵及液壓馬達的公稱排量系列20-3 1.1.3液壓元件的油口螺紋連接尺寸20-4 1.1.4液壓系統硬管外徑系列和軟管內徑系列20-4 1.1.

5液壓缸、氣缸內徑及活塞杆外徑系列20-4 1.1.6液壓缸、氣缸活塞行程系列20-4 1.1.7液壓元件清潔度指標20-5 1.1.8液壓閥油口、底板、控制裝置和電磁鐵的標識20-7 1.1.9液壓泵站油箱公稱容量系列20-7 1.2液壓圖形符號20-7 1.2.1圖形符號20-7 1.2.2液壓圖形符號繪製規則20-16 1.3常用液壓術語20-19 1.3.1基本術語20-19 1.3.2液壓泵的術語20-20 1.3.3液壓執行元件的術語20-20 1.3.4液壓閥的術語20-21 1.3.5液壓輔件及其他專業術語20-23 第2章 液壓流體力學常用計算公式及資料 2.1流體力學基本

公式20-25 2.2流體靜力學公式20-25 2.3流體動力學公式20-26 2.4阻力計算20-27 2.4.1沿程阻力損失計算20-27 2.4.2局部阻力損失計算20-28 2.5孔口及管嘴出流、縫隙流動、液壓衝擊20-30 2.5.1孔口及管嘴出流計算20-30 2.5.2縫隙流動計算20-31 2.6液壓衝擊計算20-32 第3章 液壓系統設計 3.1設計計算的內容和步驟20-33 3.2明確技術要求20-33 3.3確定液壓系統主要參數20-33 3.3.1初選系統壓力20-33 3.3.2計算液壓缸尺寸或液壓馬達排量20-34 3.3.3作出液壓缸或液壓馬達工況圖20-35

3.4擬訂液壓系統原理圖20-35 3.5液壓元件的選擇20-35 3.5.1液壓執行元件的選擇20-35 3.5.2液壓泵的選擇20-36 3.5.3液壓控制閥的選擇20-37 3.5.4蓄能器的選擇20-37 3.5.5管路的選擇20-37 3.5.6確定油箱容量20-38 3.5.7篩檢程式的選擇20-38 3.5.8液壓油的選擇20-38 3.6液壓系統性能驗算20-38 3.6.1系統壓力損失計算20-39 3.6.2系統效率計算20-39 3.6.3系統發熱計算20-39 3.6.4熱交換器的選擇20-40 3.7液壓裝置結構設計20-41 3.8液壓泵站設計20-45 3.8.1

液壓泵站的組成及分類20-45 3.8.2油箱及其設計20-46 3.8.3液壓泵組的結構設計20-47 3.8.4蓄能器裝置的設計20-50 3.9液壓集成塊設計20-51 3.10全面審核及編寫技術檔20-55 3.11液壓系統設計計算實例20-56 3.11.1機床液壓系統設計實例20-56 3.11.2油壓機液壓系統設計實例20-58 3.11.3注塑機液壓系統設計實例20-59 第4章 液壓基本回路 4.1概述20-61 4.2液壓源回路20-61 4.3壓力控制回路20-63 4.3.1調壓回路20-64 4.3.2減壓回路20-65 4.3.3增壓回路20-66 4.3.4保壓

回路20-67 4.3.5卸荷回路20-70 4.3.6平衡回路20-73 4.3.7緩衝回路20-74 4.3.8卸壓回路20-78 4.3.9制動回路20-81 4.4速度控制回路20-82 4.4.1調速回路20-82 4.4.2增速回路20-86 4.4.3減速回路20-88 4.4.4二次進給回路、比例閥連續調速回路20-89 4.5同步控制回路20-90 4.6方向控制回路20-94 4.6.1換向回路20-94 4.6.2鎖緊回路20-96 4.6.3連續往復運動回路20-97 4.7液壓馬達回路20-99 4.8其他液壓回路20-101 4.8.1順序動作回路20-101 4.

8.2插裝閥控制回路20-104 4.9二次調節靜液傳動回路20-105 第5章 液壓工作介質 5.1液壓介質的分類20-106 5.1.1分組20-106 5.1.2命名20-106 5.1.3代號20-106 5.1.4H組(液壓系統)常用工作介質的牌號及主要應用20-106 5.1.5常用工作介質與材料的適應性20-108 5.2工作介質的選擇20-109 5.2.1根據工作環境選擇20-109 5.2.2根據液壓系統工作溫度選擇20-109 5.2.2.1液壓系統的工作溫度20-109 5.2.2.2工作介質的工作溫度範圍20-109 5.2.3根據工作壓力選擇20-110 5.2.

4根據液壓泵類型選擇20-110 5.2.5工作介質黏度的選擇20-110 5.2.6工作介質污染度等級的確定20-110 5.2.7其他要求20-111 5.3工作介質的使用20-111 5.3.1污染控制20-111 5.3.2過濾20-112 5.3.3補充工作介質20-112 5.3.4更換工作介質20-112 5.3.5工作介質的維護20-112 5.3.6工作介質的檢測20-112 5.3.6.1工作介質理化性能檢測20-112 5.3.6.2工作介質污染度檢測20-113 5.3.7安全與環保20-113 5.4工作介質的貯存20-113 5.5工作介質廢棄處理20-113 第

6章 液壓泵 6.1液壓泵的分類20-114 6.2液壓泵的主要技術參數及計算公式20-114 6.2.1液壓泵的主要技術參數20-114 6.2.2液壓泵的常用計算公式20-115 6.3液壓泵的技術性能和參數選擇20-115 6.4齒輪泵20-116 6.4.1齒輪泵的工作原理及主要結構特點20-116 6.4.2齒輪泵拆裝方法、使用注意事項20-117 6.4.3齒輪泵產品20-118 6.4.3.1齒輪泵產品技術參數總覽20-118 6.4.3.2CB型齒輪泵20-118 6.4.3.3CB-B型齒輪泵20-120 6.4.3.4CBF-E型齒輪泵20-122 6.4.3.5CBF-F

型齒輪泵20-124 6.4.3.6CBG型齒輪泵20-125 6.4.3.7P系列齒輪泵20-129 6.4.3.8NB型內嚙合齒輪泵20-131 6.4.3.9三聯齒輪泵20-135 6.4.3.10恒流齒輪泵20-137 6.4.3.11複合齒輪泵20-137 6.4.3.12GPY系列齒輪泵20-139 6.5葉片泵產品20-139 6.5.1葉片泵的工作原理及主要結構特點20-139 6.5.2葉片泵產品20-141 6.5.2.1葉片泵產品技術參數概覽20-141 6.5.2.2YB型、YB1型葉片泵20-141 6.5.2.3YB-※車輛用葉片泵20-144 6.5.2.4PV2

R型葉片泵20-144 6.5.2.5PFE型柱銷式葉片泵20-149 6.5.2.6YBX型限壓式變數葉片泵20-154 6.5.2.7V4型變數葉片泵20-158 6.6柱塞泵產品20-160 6.6.1柱塞泵的工作原理及主要結構特點20-160 6.6.2柱塞泵的拆裝方法和注意事項20-162 6.6.3柱塞泵產品20-162 6.6.3.1柱塞泵產品技術參數概覽20-162 6.6.3.2CY14-1B型斜盤式軸向柱塞泵20-163 6.6.3.3A2F型柱塞泵20-166 6.6.3.4ZB型斜軸式軸向柱塞泵20-171 6.6.3.5JB型徑向柱塞泵20-172 6.6.3.6A1

0V型軸向柱塞泵20-174 6.6.3.7RK型超高壓徑向柱塞泵20-178 6.6.3.8SB型手動泵20-179 第7章 液壓馬達 7.1液壓馬達的分類20-180 7.2液壓馬達的主要參數及計算公式20-180 7.2.1主要參數20-180 7.2.2計算公式20-181 7.2.3液壓馬達主要技術參數概覽20-181 7.3液壓馬達的結構特點20-182 7.4齒輪馬達20-183 7.4.1外嚙合齒輪馬達20-184 7.4.1.1GM5型齒輪馬達20-184 7.4.1.2CM-C型齒輪馬達20-186 7.4.1.3CM-G4型齒輪馬達20-187 7.4.1.4CM-D型

齒輪馬達20-188 7.4.1.5CMZ型齒輪馬達20-189 7.4.1.6CMW型齒輪馬達20-189 7.4.1.7CMK型齒輪馬達20-190 7.4.1.8CM-F型齒輪馬達20-191 7.4.1.9CB-E型齒輪馬達20-192 7.4.2擺線液壓馬達20-193 7.4.2.1BYM型齒輪馬達20-193 7.4.2.2BM-C/D/E/F型擺線液壓馬達20-194 7.5葉片馬達20-197 7.5.1YM型液壓馬達20-197 7.5.1.1YM型中壓液壓馬達20-197 7.5.1.2YM型中高壓液壓馬達20-199 7.5.1.3YM※型低速大扭矩葉片馬達20-200

7.5.2BMS、BMD型葉片擺動馬達20-202 7.6柱塞馬達20-203 7.6.1斜盤式軸向柱塞式馬達20-203 7.6.1.1ZM、XM型柱塞馬達20-204 7.6.1.2HTM(SXM)型雙斜盤軸向柱塞馬達20-205 7.6.1.3PMFBQA型輕型軸向柱塞馬達20-209 7.6.2斜軸式軸向柱塞馬達20-212 7.6.2.1A2F型斜軸式軸向柱塞馬達20-212 7.6.2.2A6V型斜軸式變數馬達20-213 7.6.3徑向柱塞馬達20-214 7.6.3.1NJM型柱塞馬達20-214 7.6.3.21JMD型柱塞馬達20-218 7.6.3.3JM※系列徑向柱塞

馬達20-219 7.6.4球塞式液壓馬達20-227 7.6.4.1QJM型徑向球塞馬達20-227 7.6.4.2QJM型帶制動器液壓馬達20-231 7.6.4.3QKM型液壓馬達20-237 7.7曲軸連杆式徑向柱塞馬達20-240 7.8液壓馬達的選用20-240 7.9擺動液壓馬達20-241 7.9.1擺動液壓馬達的分類20-241 7.9.2擺動液壓馬達產品20-242 7.9.2.1YMD型單葉片擺動馬達20-242 7.9.2.2YMS型雙葉片馬達20-243 7.9.3擺動液壓馬達的選擇原則20-245 第8章 液壓缸 8.1液壓缸的類型20-246 8.2液壓缸的基本

參數20-247 8.3液壓缸的安裝方式20-250 8.4液壓缸的主要結構、材料及技術要求20-256 8.4.1缸體和缸蓋的材料及技術要求20-256 8.4.2缸體端部連接形式20-257 8.4.3活塞20-262 8.4.3.1活塞材料及尺寸和公差20-262 8.4.3.2常用的活塞結構形式20-262 8.4.3.3活塞的密封20-262 8.4.4活塞杆20-266 8.4.5活塞杆的導向、密封和防塵20-269 8.4.5.1導向套的材料和技術要求20-269 8.4.5.2活塞杆的密封20-270 8.4.5.3活塞杆的防塵圈20-272 8.4.6液壓缸的緩衝裝置20-2

73 8.4.7液壓缸的排氣裝置20-273 8.5液壓缸的設計計算20-274 8.5.1液壓缸的設計計算20-274 8.5.2液壓缸性能參數的計算20-275 8.5.3液壓缸主要幾何參數的計算20-277 8.5.4液壓缸結構參數的計算20-279 8.5.5液壓缸的連接計算20-282 8.5.6活塞杆穩定性驗算20-285 8.6液壓缸標準系列20-285 8.6.1工程液壓缸系列20-285 8.6.2冶金設備用標準液壓缸系列20-294 8.6.2.1YHG1型冶金設備標準液壓缸20-294 8.6.2.2ZQ型重型冶金設備液壓缸20-302 8.6.2.3JB系列冶金設備液壓

缸20-307 8.6.2.4YG型液壓缸20-311 8.6.2.5UY型液壓缸20-318 8.6.3車輛用液壓缸系列20-324 8.6.3.1DG型車輛液壓缸20-324 8.6.3.2G※型液壓缸20-327 8.6.4重載液壓缸20-329 8.6.4.1CD/CG型液壓缸20-329 8.6.4.2CG250、CG350等速重載液壓缸尺寸20-343 8.6.5輕載拉杆式液壓缸20-346 8.6.6帶接近開關的拉杆式液壓缸20-354 8.6.7伸縮式套筒液壓缸20-355 8.6.8感測器內置式液壓缸20-357 8.7液壓缸的加工工藝與拆裝方法、注意事項20-358 8.8

液壓缸的選擇指南20-362 第9章 液壓控制閥 9.1液壓控制閥的分類20-366 9.1.1按照液壓閥的功能和用途進行分類20-366 9.1.2按照液壓閥的控制方式進行分類20-366 9.1.3按照液壓閥控制信號的形式進行分類20-366 9.1.4按照液壓閥的結構形式進行分類20-367 9.1.5按照液壓閥的連接方式進行分類20-367 9.2液壓控制元件的性能參數20-368 9.3壓力控制閥20-368 9.3.1溢流閥20-368 9.3.1.1普通溢流閥20-368 9.3.1.2電磁溢流閥20-372 9.3.1.3卸荷溢流閥20-373 9.3.2減壓閥20-373

9.3.3順序閥20-376 9.3.4溢流閥、減壓閥、順序閥的綜合比較20-379 9.3.5壓力繼電器20-379 9.3.6典型產品20-381 9.3.6.1直動型溢流閥及遠程調壓閥20-381 9.3.6.2先導型溢流閥、電磁溢流閥20-385 9.3.6.3卸荷溢流閥20-388 9.3.6.4減壓閥20-392 9.3.6.5順序閥20-400 9.3.6.6壓力繼電器20-404 9.4流量控制閥20-408 9.4.1節流閥及單向節流閥20-408 9.4.2調速閥及單向調速閥20-411 9.4.3溢流節流閥20-415 9.4.4分流集流閥20-415 9.4.5典型產品

20-416 9.4.5.1節流閥20-416 9.4.5.2調速閥20-419 9.4.5.3分流集流閥(同步閥)20-425 9.5方向控制閥20-428 9.5.1方向控制閥的工作原理和結構20-428 9.5.2普通單向閥20-431 9.5.3液控單向閥20-432 9.5.4電磁換向閥20-436 9.5.5電液換向閥20-443 9.5.6其他類型的方向閥20-450 9.5.7典型產品20-453 9.5.7.1單向閥20-453 9.5.7.2液控單向閥20-456 9.5.7.3電磁換向閥20-460 9.5.7.4電液換向閥20-470 9.5.7.5手動換向閥和行程換向

閥20-475 9.6多路換向閥20-482 9.6.1多路換向閥工作原理、典型結構及性能20-482 9.6.2產品介紹20-485 9.6.2.1ZFS型多路換向閥20-485 9.6.2.2ZFS-※※H型多路換向閥20-487 9.6.2.3DF型多路換向閥20-488 9.6.2.4CDB型多路換向閥20-489 9.7疊加閥20-491 9.7.1疊加閥工作原理、典型結構及性能20-491 9.7.2產品介紹20-493 9.8插裝閥20-503 9.8.1插裝閥的工作原理和結構20-504 9.8.2插裝閥的典型組件20-506 9.8.3插裝閥的基本回路20-510 9.8.4

插裝閥典型產品20-511 9.8.4.1力士樂系列插裝閥產品(L系列)20-511 9.8.4.2威格士系列插裝閥20-529 9.9液壓閥的清洗和拆裝20-536 9.10液壓控制元件的選型原則20-537 9.11液壓控制裝置的集成20-538 9.11.1液壓控制裝置的板式集成20-538 9.11.2液壓控制裝置的塊式集成20-542 9.11.3液壓控制裝置的疊加閥式集成20-547 9.11.4液壓控制裝置的插入式集成20-549 9.11.5液壓控制裝置的複合式集成20-550 第10章 液壓輔件與液壓泵站 10.1蓄能器20-551 10.1.1蓄能器的種類及特點20-55

1 10.1.2蓄能器在系統中的應用20-552 10.1.3各種蓄能器的性能及用途20-552 10.1.4蓄能器的容量計算20-553 10.1.5蓄能器的選擇20-553 10.1.6蓄能器產品20-553 10.1.6.1NXQ型囊式蓄能器20-553 10.1.6.2NXQ型囊式蓄膠囊20-555 10.1.6.3HXQ型活塞式蓄能器20-556 10.1.6.4GXQ型隔膜式蓄能器20-557 10.1.6.5GLXQ型管路式蓄能器20-558 10.1.6.6CQP型非隔離式蓄能器(儲氣罐)20-559 10.1.6.7囊式蓄能器站20-560 10.1.6.8活塞式蓄能器站及氮

氣瓶組20-561 10.1.7蓄能器附件20-562 10.1.7.1CQJ型蓄能器充氮工具20-562 10.1.7.2CPU型蓄能器充氮工具20-563 10.1.7.3CDZs-D1型充氮車(氮氣充壓裝置)20-564 10.1.7.4AQF型蓄能器安全球閥20-566 10.1.7.5AJF型蓄能器截止閥20-567 10.1.7.6AJ型蓄能器控制閥組20-568 10.1.7.7QFZ型蓄能器安全閥組20-570 10.1.7.8QF-CR型蓄能器氣體安全閥20-572 10.1.7.9QXF型蓄能器充氣閥20-572 10.1.7.10蓄能器固定組件20-573 10.1.7.

11蓄能器托架20-574 10.1.7.12蓄能器卡箍20-575 10.2篩檢程式20-575 10.2.1篩檢程式的主要性能參數20-576 10.2.2篩檢程式的名稱、用途、安裝、類別、形式及效果20-576 10.2.3推薦液壓系統的清潔度和過濾精度20-577 10.2.4篩檢程式的選擇和計算20-577 10.2.5篩檢程式產品20-578 10.2.5.1WF型吸油濾油器20-578 10.2.5.2WR型吸油濾油器20-578 10.2.5.3WU、XU型吸油濾油器20-579 10.2.5.4ISV型管路吸油篩檢程式20-580 10.2.5.5TF型箱外自封式吸油篩檢程式

20-582 10.2.5.6TRF型吸回油篩檢程式20-585 10.2.5.7GP、WY型磁性回油篩檢程式20-587 10.2.5.8RFA型微型直回式回油篩檢程式20-589 10.2.5.9SRFA型雙筒微型直回式回油篩檢程式20-591 10.2.5.10XNL型箱內回油篩檢程式20-594 10.2.5.11ZU-H、QU-H型壓力管路篩檢程式20-596 10.3熱交換器20-603 10.3.1冷卻器的種類及特點20-603 10.3.2冷卻器的選擇及計算20-603 10.3.3冷卻器產品的性能和規格尺寸20-604 10.3.4電磁水閥20-616 10.3.5GL型冷卻

水篩檢程式20-617 10.3.6加熱器20-617 10.4液壓站20-619 10.4.1液壓站的結構形式20-619 10.4.2典型液壓站產品20-620 10.4.3油箱20-622 10.5溫度儀錶20-624 10.5.1溫度錶(計)20-624 10.5.1.1WS※型雙金屬溫度計20-624 10.5.1.2WTZ型溫度計20-624 10.5.2WTYK 型壓力式溫度控制器20-624 10.5.3WZ※型溫度感測器20-624 10.6壓力儀錶20-624 10.6.1Y系列壓力錶20-624 10.6.2YTXG型磁感式電接點壓力錶20-624 10.6.3Y※TZ型

遠程壓力錶20-624 10.6.4BT型壓力錶20-624 10.6.5壓力錶開關20-624 10.6.5.1KF型壓力錶開關20-624 10.6.5.2AF6E型壓力錶開關20-624 10.6.5.3MS型六點壓力錶開關20-624 10.6.6測壓、排氣接頭及測壓軟管20-624 10.6.6.1PT型測壓排氣接頭20-624 10.6.6.2HF型測壓軟管20-624 10.7空氣濾清器20-624 10.7.1QUQ型空氣濾清器20-624 10.7.2EF型空氣篩檢程式20-624 10.7.3PFB型增壓式空氣濾清器20-624 10.8液位儀錶20-624 10.8.1Y

WZ型液位計20-624 10.8.2CYW型液位液溫計20-624 10.8.3YKZQ型液位控制器20-624 10.9流量儀錶20-624 10.9.1LC12型橢圓齒輪流量計20-624 10.9.2LWGY型渦輪流量感測器20-624 10.10常用閥門20-624 10.10.1高壓球閥20-624 10.10.1.1YJZQ型高壓球閥20-624 10.10.1.2Q21N型外螺紋球閥20-624 10.10.2JZFS系列高壓截止閥20-624 10.10.3DD71X型開閉發信器蝶閥20-624 10.10.4D71X-16對夾式手動蝶閥20-624 10.10.5Q11F-

16型低壓內螺紋直通式球閥20-624 10.11E型減震器20-624 10.12KXT型可曲撓橡膠接管20-624 10.13NL型內齒形彈性聯軸器20-625 10.14管路20-625 10.14.1管路的計算20-625 10.14.2膠管的選擇及注意事項20-625 10.15管接頭20-625 10.15.1金屬管接頭O形圈平面密封接頭20-625 10.15.2錐密封焊接式管接頭20-625 10.15.3卡套式管接頭規格20-625 10.15.4擴口式管接頭規格20-625 10.15.5錐密封焊接式方接頭20-625 10.15.6液壓軟管接頭20-625 10.15.7

快換接頭20-625 10.15.8旋轉接頭20-625 10.15.9螺塞20-625 10.15.10法蘭20-625 10.15.11管夾20-625 10.15.11.1鋼管夾20-625 10.15.11.2塑膠管夾20-625 第11章 液壓控制系統概述 11.1液壓傳動系統與液壓控制系統的比較20-626 11.2電液伺服系統和電液比例系統的比較20-628 11.3液壓控制系統的組成及分類20-628 11.4液壓控制系統的基本概念20-631 11.5液壓控制系統的基本特性20-633 11.5.1電液位置控制系統的基本特性20-635 11.5.2電液速度控制系統的基本特

性20-638 11.6液壓控制系統的特點及其應用20-639 11.6.1液壓控制系統的特點20-639 11.6.2液壓控制系統的應用20-640 第12章 液壓伺服控制系統 12.1液壓伺服控制系統的組成和工作原理20-646 12.2電液伺服閥20-648 12.2.1典型電液伺服閥結構20-653 12.2.2電液伺服閥的基本特性及其性能參數20-657 12.2.3電液伺服閥線圈接法20-661 12.2.4電液伺服閥使用注意事項20-662 12.2.5電液伺服閥故障現象和原因20-663 12.3伺服放大器20-665 12.4電液伺服系統設計20-667 12.4.1全面理

解設計要求20-667 12.4.2擬訂控制方案、繪製系統原理圖20-667 12.4.3動力元件的參數選擇20-668 12.4.4液壓系統固有頻率對加速和制動程度的限制20-675 12.4.5伺服閥選擇注意事項20-675 12.4.6執行元件的選擇20-676 12.4.7回饋感測器的選擇20-677 12.4.8確定系統的方塊圖20-679 12.4.9系統靜動態品質分析及確定校正特性20-679 12.4.10模擬分析20-679 12.5電液伺服系統應用舉例20-682 12.5.1力、壓力伺服系統應用實例20-683 12.5.2流量伺服系統應用實例20-690 12.5.3位

置系統應用實例20-691 12.5.4伺服系統液壓參數的計算實例20-706 12.6主要電液伺服閥產品20-713 12.6.1國內電液伺服閥主要產品20-713 12.6.1.1雙噴嘴擋板力回饋電液伺服閥20-713 12.6.1.2雙噴嘴擋板電回饋(FF109、QDY3、QDY8、DYSF型)電液伺服閥20-715 12.6.1.3動圈式滑閥直接回饋式(YJ、SV、QDY4型)、滑閥直接位置回饋式(DQSF-1型)電液伺服閥20-716 12.6.1.4動圈力綜合式壓力伺服閥(FF119)、雙噴嘴-擋板噴嘴壓力回饋式伺服閥(DYSF-3P)、P-Q型伺服閥(FF118)、射流管力回饋伺

服閥(CSDY、FSDY、DSDY、SSDY)20-717 12.6.1.5動圈力式伺服閥(SV9、SVA9)20-718 12.6.1.6動圈力式伺服閥(SVA8、SVA10)20-719 12.6.2國外主要電液伺服閥產品20-720 12.6.2.1雙噴嘴力回饋式電液伺服閥(MOOG)20-720 12.6.2.2雙噴嘴力回饋式電液伺服閥(DOWTY、SM4)20-721 12.6.2.3雙噴嘴力回饋式電液伺服閥(MOOG D761)和電回饋式電液伺服閥(MOOG D765)20-722 12.6.2.4直動電回饋式伺服閥(DDV)MOOG D633及D634系列20-724 12.6.

2.5電回饋三級伺服閥MOOG D791和D792系列20-725 12.6.2.6EMG伺服閥SV1-1020-727 12.6.2.7MOOG系列電回饋伺服閥20-729 12.6.2.8伺服射流管電回饋高回應二級伺服閥MOOG D661 GC系列20-732 12.6.2.9射流管力回饋Abex和射流偏轉板力回饋伺服閥MOOG26系列20-735 12.6.2.10博世力士樂(Bosch Rexroth)雙噴嘴擋板機械(力)和/或電回饋二級伺服閥4WS(E)2EM6-2X、4WS(E)2EM(D)10-5X、4WS(E)2EM(D)16-2X和電回饋三級伺服閥4WSE3EE20-735

12.6.3電液伺服閥的外形及安裝尺寸20-742 12.6.3.1FF101、FF102、MOOG30和DOWTY30型電液伺服閥外形及安裝尺寸20-742 12.6.3.2FF102、YF7、MOOG31、MOOG32、DOWTY31和DOWTY32型伺服閥外形及安裝尺寸20-742 12.6.3.3FF113、YFW10和MOOG72型電液伺服閥外形及安裝尺寸20-743 12.6.3.4FF106A、FF108和FF119型伺服閥外形及安裝尺寸20-744 12.6.3.5FF106、FF130、YF13、MOOG35和MOOG34型電液伺服閥外形及安裝尺寸20-745 12.6.3.

6QDY系列電液伺服閥外形及安裝尺寸20-745 12.6.3.7FF131、YFW06、QYSF-3Q、DOWTY45514659和MOOG78型伺服閥外形及安裝尺寸20-746 12.6.3.8FF109和DYSF-3G-111型電回饋三級閥外形及安裝尺寸20-747 12.6.3.9SV(CSV)和SVA型電液伺服閥外形及安裝尺寸20-748 12.6.3.10YJ741、YJ742和YJ861型電液伺服閥外形及安裝尺寸20-748 12.6.3.11CSDY和Abex型電液伺服閥外形及安裝尺寸20-749 12.6.3.12MOOG760、MOOGG761和MOOGG631型電液伺服閥

外形及安裝尺寸20-750 12.6.3.13MOOG D633、D634系列直動式電液伺服閥外形及安裝尺寸20-751 12.6.3.14MOOG D791和D792型電回饋三級閥外形及安裝尺寸20-752 12.6.3.15MOOG D662~D665系列電液伺服閥外形及安裝尺寸20-753 12.6.3.16博世力士樂電回饋三級閥4WSE3EE(16、25、32)外形及安裝尺寸20-754 12.7伺服液壓缸產品20-755 12.7.1US系列伺服液壓缸20-755 12.7.2海特公司伺服液壓缸20-756 12.7.3REXROTH公司伺服液壓缸20-758 12.7.4MOOG公

司伺服液壓缸20-759 12.7.5ATOS公司伺服液壓缸20-761 12.8液壓伺服系統設計禁忌20-762 12.9液壓伺服系統故障排除20-763 第13章 電液比例控制系統 13.1電液比例控制系統的組成和工作原理20-767 13.2比例電磁鐵20-770 13.3比例放大器20-771 13.4電液比例壓力閥20-791 13.5電液比例流量閥20-797 13.6電液比例方向閥20-801 13.7電液比例壓力流量複合閥20-808 13.8負載壓力補償用壓力補償器20-808 13.9比例控制裝置的典型曲線20-810 13.10比例控制系統典型原理圖20-814 13.

11閉環控制系統的分析方法20-829 13.12比例閥的選用20-831 13.13國內主要比例閥產品20-834 13.13.1BQY-G型電液比例三通調速閥20-834 13.13.2BFS和BFL比例方向流量閥20-834 13.13.3BY※型比例溢流閥20-834 13.13.43BYL型比例壓力流量複合閥20-835 13.13.54BEY型比例方向閥20-835 13.13.6BYY型比例溢流閥20-836 13.13.7BJY型比例減壓閥20-836 13.13.8DYBL和DYBQ型比例節流閥20-836 13.13.9BPQ型比例壓力流量複合閥20-837 13.13.1

04B型比例方向閥20-837 13.13.114WRA型電磁比例方向閥20-838 13.13.124WRE型電磁比例方向閥20-839 13.13.134WRZH型電液比例方向閥20-840 13.13.14DBETR型比例壓力溢流閥20-842 13.13.15DBE/DBEM型比例溢流閥20-843 13.13.163DREP6三通比例壓力控制閥20-844 13.13.17DRE/DREM型比例減壓閥20-844 13.13.18ZFRE6型二通比例調速閥20-845 13.13.19ZERE※型二通比例調速閥20-847 13.13.20ED型比例遙控溢流閥20-848 13.13

.21EB型比例溢流閥20-848 13.13.22ERB型比例溢流減壓閥20-849 13.13.23EF(C)G型比例(帶單向閥)流量閥20-849 13.14國外主要比例閥產品概覽20-850 13.14.1BOSCH比例溢流閥(不帶位移控制)20-850 13.14.2BOSCH比例溢流閥和線性比例溢流閥(帶位移控制)20-851 13.14.3BOSCH NG6帶集成放大器比例溢流閥20-852 13.14.4BOSCH NG10比例溢流閥和比例減壓閥(帶位移控制)20-853 13.14.5BOSCH NG6三通比例減壓閥(不帶/帶位移控制)20-854 13.14.6BOSCH

NG6、NG10比例節流閥(不帶位移控制)20-855 13.14.7BOSCH NG6、NG10比例節流閥(帶位移控制)20-856 13.14.8BOSCH NG10帶集成放大器比例節流閥(帶位移控制)20-857 13.14.9BOSCH比例流量閥(帶位移控制及不帶位移控制)20-858 13.14.10BOSCH不帶位移感測器比例方向閥20-860 13.14.11BOSCH比例方向閥(帶位移控制)20-861 13.14.12BOSCH帶集成放大器比例方向閥20-862 13.14.13BOSCH比例控制閥20-863 13.14.14BOSCH插裝式比例節流閥20-866 13.1

4.15Atos主要比例閥20-867 13.14.16Vickers主要比例閥20-868 13.14.16.1KDG3V、KDG4V比例方向閥20-868 13.14.16.2K(A)DG4V-3,K(A)TDG4V-3比例方向閥20-875 參考文獻20-881  

液壓煞車硬體迴路模擬於車輛穩定控制發展之研究

為了解決油壓電磁閥符號的問題,作者徐暐捷 這樣論述:

本文的目的著重在控制器設計與實現於實時計算環境中硬體在環迴路的驗證,首先用線性自行車模型作為穩定性控制器的參考模型和狀態系統識別估測得的系統狀態之差值做為控制依據,透過線性二次調節器得到參考偏航力矩,控制器主要功用為能在情況危急時限制車身側滑角並適當地追隨偏航角速度。透過穩定性判斷控制系統要在何時介入,再將上層產生的參考偏航力矩透過二次規劃分配最佳的扭力至四輪,利用曲線擬合建置出與真實平台足夠相似的油壓模型,此模型能夠估測出近似於實際平台的油壓響應再回授至Carsim。硬體在環迴路方面(Hardware in the loop)則在Carsim RT和Matlab/Simulink進行模擬,

並於RT-LAB進行實時計算,再同步將命令轉換成CAN訊號藉由RT電腦發送到硬體平台之ESC作動器控制電磁閥開關產生不同壓力,量測其油壓訊號再回傳至電腦進行數據分析完成回授控制,此實驗程序為控制器設計開發重要的一環,可以用於更佳有效地測試嵌入式控制器器系統。