Flora of North Ameri的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

國立臺灣海洋大學 食品科學系 蕭心怡所指導 陳家耀的 空腸彎曲桿菌在雞肉產品加工過程中的交叉污染及抗菌物質對其之抑制效果 (2020),提出Flora of North Ameri關鍵因素是什麼,來自於空腸彎曲桿菌、交叉感染、抗菌效率、風險評估。

而第二篇論文中國醫藥大學 中國藥學暨中藥資源學系博士班 張永勳所指導 吳坤璋的 倒地蜈蚣之品質管制暨其主成分Ugonin M對內毒素誘發急性肺損傷之保護作用研究 (2017),提出因為有 錫蘭七指蕨、倒地蜈蚣、蜈蚣草、品質管制、急性肺損傷的重點而找出了 Flora of North Ameri的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Flora of North Ameri,大家也想知道這些:

空腸彎曲桿菌在雞肉產品加工過程中的交叉污染及抗菌物質對其之抑制效果

為了解決Flora of North Ameri的問題,作者陳家耀 這樣論述:

Campylobacter spp. 已被公認為近世紀以來最常引起腸胃炎之人畜共通病原菌,屬於食源性病原體。近年來,隨著食品加工之需求的增長,使食品工業操作衛生的重要性大為提高,尤其是加工分切階段、透過與被污染的食品接觸的器材道具,容易發生交叉污染現象。本研究之目的擬以禽肉分切場之作業流程中不同溫度之下所發生交叉污染的機率,及探討乳酸菌片球菌素和香辛料 (大蒜、生薑、洋蔥) 之抗菌效果,以及與螯合劑 (EDTA) 合併使用之組合對雞肉產品之空腸彎曲桿菌的抗菌效果。實驗中所採用四種不同溫度 (10°C、15°C、20°C、25°C) 以及八種不同情境來模擬交叉污染與各種器具 (手套、刀子、砧板

以及解凍水) 之接觸。此外,探討溫度和各種器具材質對空腸彎曲桿菌之轉移率的影響。另外抗菌測試不同濃度香辛料之萃取物 (10%、25%、50%、75% 和100%) 與探討產生 pediocin 之乳酸菌 Pediococcus pentosaceus BCRC 14024 對空腸彎曲桿菌之抑菌效果。結果顯示隨著溫度的上升,空腸彎曲桿菌之轉移率也逐漸上升,實驗中最高之轉移率為在25°C從被污染的雞肉轉移到砧板 (29.40%),而相同使用浸泡過受污染的雞屠體之水源持續浸泡未受污染的雞肉在於25°C 也具有相當高之轉移率 (27.50%)。大蒜在100% 的濃度顯示為最佳的抑制結果、其抑菌環為46

.50±3.5 mm,而生薑與洋蔥在最高濃度的抑制效果分別為25.00±0.0 mm與17.00±1.0 mm。產Pediocin之乳酸菌BCRC 14024最適培養時間為42小時,培養溫度為30°C,培養之起始pH值為5,在此培養條件下所產之pediocin對於Campylobacter jejuni具有較佳之抑菌效果。另外,乳酸菌片球菌素若與EDTA合併使用具對C. jejuni之抑菌能力大於單一使用、其抑菌環直徑為 14±0.8 mm。透過風險計算空腸彎曲桿菌之暴露量為0.178 log CFU/6-kg package,最後計算出消費者在收到本案例公司之產品當下,能被驗出該菌在雞肉產

品中之風險值為 0.00814。本篇研究說明雞肉在加工過程中存在相當程度的交叉污染以及各種抗菌物質的抑菌效果之研究可為雞肉產品在加工過程中的風險管理策略上提供科學依據。

倒地蜈蚣之品質管制暨其主成分Ugonin M對內毒素誘發急性肺損傷之保護作用研究

為了解決Flora of North Ameri的問題,作者吳坤璋 這樣論述:

Contents IList of tables VIList of figures VIIIList of abbreviations XAbstract XIIAbstract in Chinese XIV1 Introduction 1 1.1 Helminthostachys zeylanica (L.) Hook. 11.1.1 Foreword of Daodi-Ugon 11.1.2 Plant classification of H. zeylanica 31.1.3 Key to genera of Ophioglossaceae 31.1.4 Sy

nonyms of H. zeylanica 41.1.5 Introduction of H. zeylanica 51.1.6 Vernacular names of H. zeylanica 91.1.7 Folk uses of H. zeylanica in the South-East Asia 101.1.8 Commercial names of Daodi-Ugon and its misused herb medicine 121.1.9 Summary of the components in HZ 171.1.10 Biological activities

of HZ and its components 31 1.2 Quality control 42 1.3 Acute lung injury 43 1.4 Motive and goal 452 Material and methods 46 2.1 Material 46 2.2 Microscopic identification 472.2.1 Preparation of cross sections slides 472.2.2 Preparation of powder slides 47 2.3 Compound isolation and c

haracterization 48 2.4 Methods for quality control study 492.4.1 Optimization of extraction solvents 492.4.2 Optimization of extraction times 492.4.3 Preparation of standard solution 502.4.4 Preparation of sample solution 502.4.5 Determination of wavelength 512.4.6 Determination of column 5

12.4.7 Calibration curves 512.4.8 Precision test 522.4.9 Repeatability test 522.4.10 Stability test 522.4.11 Limit of detection and limit of quantitation test 522.4.12 Recovery test 532.4.13 Chromatographic conditions 532.4.14 Assay 542.4.15 Chromatographic fingerprinting 552.4.16 Calculati

on of the content limits of three analytes 56 2.5 Methods for in vitro anti-inflammatory study 572.5.1 Cell culture 572.5.2 Cytotoxicity and the measurement of nitric oxide 57 2.6 Methods for in vivo anti-inflammatory study 582.6.1 Animal maintenance 582.6.2 Model of LPS-induced ALI 592.6.3

Histological examination 592.6.4 Lung wet to dry weight ratio 602.6.5 Bronchoalveolar lavage fluid, total cell count and protein analysis 602.6.6 TNF-α, IL-6, and IL-1β cytokines in BALF 602.6.7 Myeloperoxidase activity assay 612.6.8 Western blot analysis of the lung tissue 612.6.9 Statistica

l Analysis 623 Results and discussions 63 3.1 Microscopic identification 633.1.1 Microscopic identification of transverse section of HZ 633.1.2 Microscopic identification of powder of HZ 69 3.2 The structure determination of Ugonins 72 3.3 Results of quality control study 743.3.1 Optimizat

ion of the analytical column 743.3.2 Optimization of the absorbtion wavelength 773.3.3 Chromatogram of Quercetin, Ugonin J, and Ugonin M 793.3.4 Chromatogram of HZ sample 803.3.5 Optimization of the extraction solvent 813.3.6 Optimization of the extraction times 823.3.7 Calibration curves of Q

uercetin, Ugonin J, and Ugonin M 833.3.8 Repeatability, precision, and stability tests 863.3.9 Limit of detection and limit of quantitation test 873.3.10 Rcovery test 903.3.11 Quantitative determination of the three analytes in HZ samples 923.3.12 Chromatographic fingerprint analysis 983.3.13

Proposed content limits for three analytes in HZ 102 3.4 Cytotoxicity and the effects of Ugonin M on NO production in Raw 264.7 cell 104 3.5 Effects of Ugonin M on LPS-induced ALI 1063.5.1 Effect of Ugonin M on lung histological changes in LPS-induced ALI mice 1063.5.2 Effects of Ugonin M on p

ulmonary edema in lung tissue 1083.5.3 Effects of Ugonin M on infiltrated cellular counts and proteins levels in BALF 1093.5.4 Effects of Ugonin M on NO, TNF-α, IL-6, and IL-1β levels in BALF 1103.5.5 Effects of Ugonin M on the activity of MPO and antioxidative enzymes in lung tissue 1123.5.6 Ef

fects of Ugonin M on iNOS and COX-2 proteins expression in lung tissue 1143.5.7 Effects of Ugonin M on activities of MAPK and NF-κB in lung tissue 1153.5.8 Effects of Ugonin M on TLR4 expression in lung tissue 1174 Conclusions 119References 123Appendix 1 1D-NMR spectrum of Ugonin J 135Appendix

2 13C-NMR spectrum of Ugonin J 136Appendix 3 1D-NMR spectrum of Ugonin M 137Appendix 4 13C-NMR spectrum of Ugonin M 138Appendix 5. Self-introduction in Chinese 139Appendix 6. Journals Publication 140Appendix 7. Literary Work in Chinese 141