pine tree vector fre的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

國立臺灣大學 植物醫學碩士學位學程 王尚禮、葉國楨所指導 陳慧儀的 應用高光譜影像法偵測草莓炭疽病之發生 (2018),提出pine tree vector fre關鍵因素是什麼,來自於草莓、炭疽病、高光譜影像分析、定量偵測、非破壞性檢測。

而第二篇論文國立臺灣師範大學 生命科學系 趙淑妙所指導 陳章輝的 松科和羅漢松的質體基因組演化和親緣關係與裸子植物中乙酰輔酶A羧化酶基因的演化 (2018),提出因為有 plastome、gymnosperms、Pinaceae、Podocarpaceae、conifers、evolution、plastid、chloroplasts、plastid-to-nucleus gene transfers、accD、acetyl-CoA carboxylase的重點而找出了 pine tree vector fre的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了pine tree vector fre,大家也想知道這些:

應用高光譜影像法偵測草莓炭疽病之發生

為了解決pine tree vector fre的問題,作者陳慧儀 這樣論述:

草莓在台灣是一種重要的經濟作物,年產值可高達 16 億新台幣,屬於一種宿根性作物,可存活 2~3 年,然其在台灣病蟲害眾多,尤以炭疽病為害甚劇,造成台灣草莓種植需年年更新母株。本試驗針對草莓育苗期間面臨主要病害-炭疽病,利用高光譜影像偵測系統,找出可辨識炭疽病的特徵波段,針對草莓葉部炭疽病進行快速且非破壞性的早期偵測,以協助炭疽病的診斷。最終期望達到自動化偵測草莓炭疽病,且在肉眼未見病徵前可利用光譜影像診斷出炭疽病潛伏感染,以協助草莓育苗業者由源頭控管母株及種苗的健康程度,降低炭疽病在苗期危害的嚴重度,將有利於草莓健康種苗供應鏈的建立。本文採用利用逐步迴歸分析進行簡易降維,再利用簡單迴歸分析

評估草莓炭疽病的病害程度,將模型分為發病害與發病前潛伏感染兩階段,發病期與潛伏感染期間分別以發病比例與接種病原菌後天數作為發病程度的依據,在評估模型的 R2、RMSEC 值後,其模型平均的 R2 和 RMSEC 分別為 R2 = 0.79、0.91; RMSEC = 0.11、0.53,另外計算偵測極限作為辨識健康與生病樣本的門檻值進行驗證,驗證結果中發病模型的健康樣本辨識率為 87%,而發病樣本的辨識率為 72%,而評估潛伏感染期間的模型在驗證結果中,健康樣本的辨識率為 72%,潛伏感染樣本的辨識率為 71%,兩模型中被辨識為發病或潛伏感染的樣本可再經由檢量模型進一步評估其發病的程度,此研究

結果證實高光譜影像分析配合逐步迴歸分析對於草莓炭疽病的定量與田間防治是具有潛力的工具之一。

松科和羅漢松的質體基因組演化和親緣關係與裸子植物中乙酰輔酶A羧化酶基因的演化

為了解決pine tree vector fre的問題,作者陳章輝 這樣論述:

Plastid genomes (plastomes) serve as valuable and cost-effective genomic resources for plants and algae. More than 2,500 complete plastomes (as of December 2018) are now publicly available on GenBank, and they provide critical information on the evolution and phylogeny of plastid-bearing organisms.

In this dissertation, I will focus on the plastome evolution of non-flowering seed plants (gymnosperms). Gymnosperms comprise ca. 1,000 species in five groups, including cycads, ginkgo, gnetophytes, Pinaceae (conifers I), and cupressophytes (conifers II). Cupressophytes may be further divided into

five families: Cupressaceae, Taxaceae, Sciadopityaceae, Araucariaceae, and Podocarpaceae. Previous studies have highlighted that gymnosperm plastomes are highly variable. However, our understanding of the plastome evolution within gymnosperm families is incomplete because not all 12 families are equ

ally represented. In this study, I aimed to investigate (1) the plastome evolution and plastid phylogenomics of the two largest conifer families, Pinaceae and Podocarpaceae, and (2) the evolution of acetyl-CoA carboxylase (ACCase) genes in all five groups of gymnosperms.This dissertation has four ch

apters. In chapter one, I reviewed the available literature on gymnosperm plastids, plastome evolution, and ACCase. In chapter two, I reconstructed the complete plastid phylogenomics of Pinaceae by sequencing two Pinaceous genera, Pseudolarix and Tsuga. The intergeneric relationships among members o

f the Abietoideae subfamily were resolved with Cedrus as sister to the clade containing Pseudolarix-Tsuga and Abies-Keteleeria, which refutes previous phylogenetic studies. I also documented accD elongation in Pinaceae for the first time.In chapter three, I examined plastome evolution in the Podocar

paceae and expanded the number of available Podocarpaceae plastomes from 5 to 13. This addition enabled me to gain more insights into plastome evolution within the family. I found an exceptionally enlarged plastome in Lagarostrobos franklinii (Huon pine), a species endemic to Tasmania. Subsequent an

alyses revealed that the Lagarostrobos plastome is enriched with repetitive sequences, pseudogenes, and intergenic spacers that were not observed in other Podocarpaceae. In addition, plastid phylogenomic trees were also built to resolve problematic nodes in the Podocarpaceae phylogeny.In chapter fou

r, I investigated the evolutionary history of ACCase genes in the five gymnosperm groups. These genes are the key regulators of fatty acid biosynthesis, and most plants have both heteromeric and homomeric ACCases in plastids and cytosol, respectively. Heteromeric ACCase is composed of four subunits:

three nuclear-encoded accA–C and one plastid-encoded accD, while homomeric ACCase is only encoded by one nuclear ACC gene. This study uncovered that: (1) the ACCD subunit in all cupressophytes (except Sciadopitys) are elongated by lineage-specific tandem repeats, (2) Sciadopitys and gnetophytes hav

e functionally transferred their accD from the plastome to the nucleus, (3) Gnetum has two accDs in their nuclear genomes, and (4) one of Gnetum’s accD dually targets plastids and mitochondria, while the other copy only targets plastoglobuli, a microcompartment within the plastid. This is the first

study to report the presence of two accDs and their distinct targeting in any green plant.