二氧化碳溶於水溫度的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

二氧化碳溶於水溫度的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦鞏健寫的 發酵製藥技術(第二版) 和佐藤健太郎的 改變世界史的12種新材料:從鐵器時代到未來超材料,從物質科學觀點看歷史如何轉變都 可以從中找到所需的評價。

另外網站碳酸鹽與鹽酸反應特性之研究關鍵詞也說明:三、探討碳酸氫鈉與鹽酸均相與異相反應後產生的溫度、溼度、二氧化碳濃度的變化特性 ... (2) 碳酸鈣難溶於水,因此在比色管中大部分是粉末狀(圖3-1-5),導致反應面積不.

這兩本書分別來自化學工業 和麥田所出版 。

國立勤益科技大學 化工與材料工程系 戴永銘所指導 鄭兆均的 鎵酸鉍/石墨化氮化碳之複合型光觸媒製備及其光還原CO2之應用 (2021),提出二氧化碳溶於水溫度關鍵因素是什麼,來自於甲醇、g-C3N4、光還原、CO2、鎵酸鉍。

而第二篇論文朝陽科技大學 環境工程與管理系 章日行所指導 曾子傑的 改質生物炭吸附廢水中氨氮及硝酸根離子之研究 (2021),提出因為有 吸附、生物炭、雙氫氧化物(LDHs)、硝酸鹽的重點而找出了 二氧化碳溶於水溫度的解答。

最後網站過冷水則補充:... 溶於汽水中的二氧化碳,令此瓶為A瓶(此瓶不再加蓋)。另取一瓶未開的汽水,令此瓶為B 瓶(此瓶加蓋) 2.將200g 的食鹽與600g 的冰塊混合成冷劑,並以水控制溫度讓 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了二氧化碳溶於水溫度,大家也想知道這些:

發酵製藥技術(第二版)

為了解決二氧化碳溶於水溫度的問題,作者鞏健 這樣論述:

教材內容涵蓋了專業及課程標準規定內容,包括發酵製藥概述,菌種選育,工業發酵培養基製備,培養基的滅菌,空氣除菌方法、設備及典型空氣除菌流程,種子製備,需氧發酵罐各部分結構功能,發酵過程溶氧、酸鹼度、泡沫的工藝控制,產物的提取和精製等完整經典發酵技術全流程的內容,同時列專門單元編著了大規模動植物細胞培養技術、基因工程製藥等現代生物技術製藥的內容,第三單元是典型產品生產案例。教材覆蓋完整知識點和崗位技能點。   線上課程資源豐富,為學習者提供課程的課件、電子教案、微課、動畫素材等多種教學輔助資源,無論對在校學生還是社會學習者均有較強的指導意義。 緒論1 一、生物製藥的概念和研究內

容1 二、生物藥物的性質1 三、生物藥物的分類2 四、生物醫藥產業現狀和展望5 拓展學習6 第一篇微生物發酵製藥 概述8 一、微生物發酵製藥的類型8 二、生物反應器9 三、微生物發酵製藥的特點9 四、微生物發酵製藥研發11 拓展學習11 第一單元發酵製藥菌種選育12 任務一發酵製藥生產菌種12 任務二生產用菌種的選育14 任務三實訓應用紫外線誘變篩選耐高糖的谷氨酸高產菌株20 拓展學習22 思考與測試23 第二單元工業發酵培養基25 任務一工業發酵培養基的成分25 任務二工業發酵培養基的類型和設計30 任務三澱粉水解糖的製備37 任務四實訓玉米澱粉液化及糖化44 拓展學習46 思考與測試47

第三單元滅菌49 任務一滅菌的方法49 任務二培養基和發酵設備的濕熱滅菌53 任務三空氣除菌59 任務四無菌檢測及發酵廢氣廢物的安全處理67 拓展學習68 思考與測試68 第四單元微生物代謝產物的生物合成與調節70 任務一微生物初級代謝產物的生物合成與調節70 任務二微生物次級代謝產物的生物合成與調節81 拓展學習85 思考與測試86 第五單元種子擴大培養88 任務一種子擴大培養的目的和任務88 任務二工業微生物的培養類型88 任務三種子製備90 任務四影響種子品質的主要因素92 任務五實訓酵母的搖瓶實驗94 拓展學習95 思考與測試96 第六單元發酵罐及附屬設備98 任務一需氧發酵罐98

任務二嫌氣發酵罐106 任務三一次性生物反應器108 知識拓展110 任務四實訓發酵罐的使用與維護111 拓展學習116 思考與測試117 第七單元發酵生產程序控制119 任務一溶解氧121 任務二溫度控制124 任務三pH值的控制127 任務四泡沫的控制129 任務五補料的控制131 任務六二氧化碳133 任務七染菌的控制135 任務八發酵過程參數監測的研究概況151 拓展學習155 思考與測試156 第八單元發酵產物的提取與精製158 任務一發酵液的預處理和固液分離159 任務二微生物細胞的破碎159 任務三發酵產物的提取161 任務四發酵產物的精製163 任務五選擇純化方法的依據164

拓展學習165 思考與測試166 第九單元安全生產與環境保護168 任務一安全生產168 任務二環境保護170 拓展學習176 思考與測試178 第二篇現代生物技術製藥 第十單元動植物細胞的培養180 任務一動物細胞的大規模培養180 任務二植物細胞的大規模培養192 拓展學習198 思考與測試199 第十一單元基因工程製藥200 任務一基因工程的概念和基因工程製藥的發展歷程200 任務二基因工程製藥技術203 任務三抗體藥物206 拓展學習208 思考與測試208 第三篇發酵製藥生產案例 案例一青黴素210 案例二維生素C214 案例三干擾素219 案例四氫化可的松223 案例五抗HBs

Ag的單克隆抗體224 知識拓展227 參考文獻228 生物醫藥作為生物產業之首,是醫藥工業的重點,也是戰略性新興產業之一,其增長速度逐年加快,需要大量高素質技術技能人才。編寫一本適合的教材是產教雙方之需,基於此,《發酵製藥技術》在編寫過程充分徵求企業生產一線工程技術專家和高職生物技術類教材建設指導委員會的意見和建議,突出高職教育的特點,根據生物製藥職業崗位群對技術操作人員知識和能力的要求,以理論滿足實踐需要為度,突出實踐性和實用性。自2005年出版以來,被眾多高校選用,也被許多企業作為職工技術培訓的重要參考資料,本次再版對內容進行了修訂和適度增刪,特別是增加了現代生物技術

製藥的新內容和數位化學習資源。 教材內容的設計以產品生產流程為主線,系統介紹了發酵藥物生產各環節的基本原理、操作技術和重要設備,同時也反映了現代生物技術製藥的新工藝和新技術。為了便於學習,每個單元都列出了知識目標和能力目標要求,提供了拓展學習資料,全書貫穿職業素質培養的理念。 本書內容分三篇,第一篇微生物發酵製藥,是按照產品的生產流程為主線、各生產環節需要的知識原理和技術技能融於一體、基於工作過程展開。第二篇現代生物技術製藥,適應現代生物醫藥行業的發展,編寫了動植物細胞的大規模培養技術和基因工程製藥技術等現代生物工程製藥技術相關內容。第三篇發酵製藥生產案例,列舉了細菌、放線菌、黴菌為生產菌

的微生物發酵典型產品生產案例,以及基因工程製藥的案例,本書增加了單克隆抗體的製備。通過掃描書中二維碼查看發酵設備虛擬模擬軟體和青黴素虛擬工廠的動畫和視頻,以説明學習者建立實際操作經驗。 本書由淄博職業學院鞏健主編,編寫緒論、第十單元、第十一單元、第三篇,山東大學生命科學院陳琦編寫第一單元、第四單元,濱州職業學院王淑欣編寫第二單元、第五單元,蘇豔編寫第三單元、第九單元,淄博職業學院宋健編寫第六單元、第八單元,樊慶魯編寫第七單元,山東金城生物藥業股份有限公司楊修亮參與指導編寫第三篇。對編寫團隊付出的辛勤勞動表示感謝。 由於編者水準有限,難免存在不足之處,歡迎各位專家和使用本教材的教師、學生、讀

者提供批評、建議與具體修改意見。 編者 2021.3

二氧化碳溶於水溫度進入發燒排行的影片

超好吃的發糕自己動手做,保你今年一定發發發!!照著做保證不失敗!! [Eng Sub]
有字幕記得打開喔! 新增 中文簡體字幕/ 英文字幕 
English subtitle

💖蒸發糕注意事項:💖
有關裝發糕的容器,建議大家使用下窄上寬的容器,蒸出來的發糕會比較美,像是吃飯的碗這樣的形狀。
但是如果你是用吃飯的碗作為容器,導熱會比較慢,要先把碗放在蒸籠裡面蒸熱,讓容器先受熱 這樣才會發,不然熱度很難傳導到粉漿,發糕會比較不容易發。
因為塔塔用的是鋁製容器,導熱比較快,就不需要先蒸過容器。

💖保證發發發的發糕 請絕對不要任意更改塔塔的配方跟作法!
準備材料:
台梗九號米 100克(每一種米口感都有影響)
低筋麵粉 200克
黑糖 60克
三溫糖 或者 甜菜根糖 30克
常溫水 260克
食用油(橄欖油或者菜籽油都可) 20克
無鋁泡打粉 12克 (★請務必用新開封的泡打粉,不要用過期的或者放很久的,都有可能會失效)
1/2小匙(2.5g)的小蘇打粉或者 醋 5cc
(純米發酵的醋都可以,主要是讓麵糊的酸鹼值達到平衡)
💖影片中是使用小蘇打粉,不過有粉絲反應有鹼味,後來我更改配方為“醋”。醋就不會有鹼味的問題。

因為發糕不像蛋糕,麵糊裡面沒有添加蛋白(鹼性物質),所以單單靠泡打粉是不夠的。
👉當泡打粉(塔塔粉)酸性物質+小蘇打粉鹼性物質在一起的時候,碰到液體跟溫度就開始酸鹼中和,產生二氧化碳(氣泡),所以大家在加入這兩樣東西的時候就會發現麵糊開始產生一些氣泡,那就表示已經起作用了,這時候通常就會成功。
麵糊不要閒置的過久!也容易不發喔!
因為泡打粉內所含的塔塔粉(酸性物質)會快速溶解在麵糰中,所以我是在最後才將泡打粉混入麵糊裡的,而影片中也跟大家建議,麵糊製作好後,五分鐘內要放入蒸籠裡面蒸,請多加留意,不要閒置太久喔!!
💖💖祝福大家今年都能夠一路發發發~~~
++++++++++++++

以前覺得發糕只是拜拜用來裝飾的而已,根本不是拿來吃的,而且市售的發糕都是裝在塑膠碗裡面的,紅紅的發糕也不知道是不是色素?所以嚐都沒嚐過就丟了。

今年有好多粉絲敲碗想看發糕怎麼做,原本對發糕興趣缺缺,這次為了大家,塔塔很認真的研究食譜,嘗試過很多比例跟作法,才能將這個完美的發糕分享給大家!

這次的米製發糕,作法跟上次分享的黑糖糕很類似,但是在比例上塔塔調整很多次,也用過幾款米來實驗,我覺得用台梗九號米做的發糕跟越光米做的發糕口感上,越光米比較黏一點,台梗九號米的黏性比較少,吃起來也有蛋糕的蓬鬆感,塔塔比較喜歡這版本,不過持家男比較喜歡越光米的版本,大家可以依照自己喜好來選材料喔!至於在來米的版本,在我們家就不太受歡迎,因為在來米的水份比較少,米比較硬,所以製作出來的黑糖發糕口感上就會比較硬一點,比較帶有古早味,當然如果喜歡在來米來的人,也是可以用在來米的喔!
有加米跟沒加米的發糕感覺完全是不一樣的,沒有加米的版本 吃起來就會比較像是小蛋糕,只有蓬鬆的口感但是少了米的香氣跟Q度,不過是最簡單的發糕製作方式喔!

另外,
我覺得很多人還是對泡打粉的安全性存有疑慮,這邊塔塔想要跟大家分享一下~
塔塔自從作烘焙開始,一直都是用 德國 Lecker’s泡打粉,他是選用橡木桶內沈積的天然結晶物(酒石酸Tartaric Acid) - 酒石酸製成塔塔粉。並且不添加明礬不含硫酸鋁、磷酸鹽、磷酸鈣成分。
(市面上有幾種比較安心的泡打粉,大家選購的時候可以多注意一下)
對於這部分 還是存有疑慮的人,可以用天然酵母發酵的方式來製作。幾乎市面上的速發酵母均含有乳化 劑(脂肪酸山梨醇酐酯)。到底要不要使用 就看自己決定囉。
需要酵母方法製作發糕的人可以參考我的米香黑糖糕 發酵麵糊的方式,但是比例上還是要用發糕的比例跟材料喔!!!
❤👉米香黑糖糕食譜:https://youtu.be/L9e_KDUyjfY

💖💖祝福大家今年都能夠一路發發發~~~


★喜歡我創作的料理影片嗎?不要忘了訂閱我的頻道喔~
https://www.youtube.com/channel/UCcb9uxCoIgw7RQjQnlgd0Xw
追蹤我的FACEBOOK: https://www.facebook.com/rosalinakitchen/

#黑糖發糕 #米製發糕 #發糕 #年菜 #年糕 #過年吉祥菜 #拜拜
#米做的發糕

鎵酸鉍/石墨化氮化碳之複合型光觸媒製備及其光還原CO2之應用

為了解決二氧化碳溶於水溫度的問題,作者鄭兆均 這樣論述:

光還原為可持續和綠色太陽能燃料以及有機化合物的光催化降解通常被認為是同時克服環境問題和能源危機的有吸引力的解決方案。本研究的主要目的是研究BixGayOz/g-C3N4 複合光催化劑用於光催化 CO2 還原為甲醇。由於成分的相對能帶排列,異質結構表現出高效的電荷分離並具有顯著的光催化氧化和還原能力,可用於甲醇生產。本論文採用化學沉澱法和水熱法合成了BixGayOz/g-C3N4複合材料。 X射線粉末衍射儀、場發射掃描電子顯微鏡能量色散X射線光譜儀、高分辨率X射線光電子能譜儀、漫反射光譜儀、比表面積分析儀和螢光光譜儀用於測試產品的分子元素組成、帶隙、化合物結構和氧化態。所有樣品的光催化活性

均基於在 254 nm 紫外輻射下 CO2 轉化為甲醇的情況進行評估。在紫外光照射下,在 450 mL NaOH 溶液中,0.05 g Ga2Bi1-2W-700-50wt% 複合催化劑達到最大甲醇生成率。該反應條件的結果表明RMeOH的甲醇形成速率= 3792.01 μmole/g-h。這項工作提供了一種簡單的策略來調整光催化劑和半導體異質結的能帶結構,以實現高效的光催化 CO2 還原。

改變世界史的12種新材料:從鐵器時代到未來超材料,從物質科學觀點看歷史如何轉變

為了解決二氧化碳溶於水溫度的問題,作者佐藤健太郎 這樣論述:

  科學與文明的化學反應、材料與歷史的物理變化 日本獲獎科普作家佐藤健太郎解析撰述 鐵、橡膠、膠原蛋白……等十二種材料 如何轉動時代之鑰、開啟改變歷史的關鍵時刻   從材料科學角度建構全球史! 本書介紹12種你最熟悉,卻未想過他有扭轉世界歷史能力的材料。 世界的變化快速,我們日常生活中的音樂載體即是一例,自戰後從唱片到CD登場後不久就讓出了寶座,至今由網路的串流及影片網站取代,急速消失。變化難以預測。作者認為世界如此快速變化,最重要的關鍵就是「材料」。自石器時代、青銅時代、鐵器時代至今,這些名詞證明了材料的出現是文明邁向新階段的關鍵。回到唱片的例子,最早的唱片是以蟲膠製成

,五○年代由於更加耐用便宜又易於量產的聚氯乙烯(PVC)唱片出現,使得流行樂的巨大市場成形。 推動歷史的材料有很多種,既有大量普及的材料,也有被競相爭奪的稀有材料,有自然和加工的材料,也有人工材料。本書選出其中十二種並介紹相關的歷史,希望能和讀者一窺材料才是打開時代之門的鑰匙。   ▌人人都愛黃金,但卻「不實用」 黃金是最為人渴望,也是集歷史於浪漫於一身的存在。黃金在牙醫治療或是電子上的用途都是很後期才被開發的,古代的黃金,如同希臘神話邁達斯國王點石成金故事所說本身毫無用處,主要是作為裝飾和貨幣,後者是最重要的用途。作者從神話切入,並介紹了黃金在日本的歷史,以及人類對黃金的追求,如淘金熱、西班

牙對印加帝國的征服,還有煉金術從現代化學的角度來看,要在燒瓶裡轉換元素是不可能的,但數千年的鍊金術發展中也發現了許多化學物質,磨練出基本化學實驗技術,化學進步後也才發現了黃金的新用途:導電。 作者也介紹了黃金的化學特性、作為貨幣的變化。今日的黃金已不再作為貨幣,但在人們心中仍是高價而保值的金屬,寄託著人類的想像。黃金卻造就了它吸引人目光的無限魅力,甚至成為計量「價值」的重要素材。   ▌從黏士到堅硬材料,陶器成為人類生活最重要的存在 陶瓷器的燒製是考古學者判斷文明的指標,也是自古便為世界各地人們常用,至今仍是生活裡被廣泛使用的材料。目前考古所知最早的燒製品是在中國湖南省出土,大約一萬八千年前的

土器。日本則是在冰河期結束時開始使用。各種形式的燒製品有助於水以及食物的儲存和調理,大幅提升人類的繁榮。 作者從化學變化來解釋為什麼黏土經過高溫能變得更加堅固耐久,並介紹了中國低溫燒製的陶藝技術(秦俑、長城磚塊)還有為了取得燃料過度砍伐森林對環境的影響,並從釉藥的進步再帶到白磁在中國和歐洲瓷器頂點梅森瓷器的起源,最後提及現代科學技術和陶瓷材料。伴隨人類超過萬年的陶瓷器,作為材料還隱藏著各式各樣的潛力。   ▌膠原蛋白不只留住青春,還在戰場上保你一命 經歷多次的冰河期以及必須跨越寒冷地域旅程的人類,在很長的時間裡唯一的防寒衣物是動物毛皮。毛皮要能使用必須經過加工,鞣製過的皮革具有柔軟度,能保溫且

輕盈,即便在有許多替代材料的今天依然很受歡迎,其祕密就在皮主要成分的膠原蛋白上。 作者從生物化學角度介紹膠原蛋白的特殊結構和重要性,膠原蛋白約占人體的三分之一,但和其他蛋白質的構造以及功能不同,主要是位於細胞外,發揮連結的作用,也是皮能維持柔軟彈性的原因,也是骨頭和肌腱的主要成分。骨頭是舊石器時代人類重要的硬質材料之一。蒙古帝國征服世界所使用的複合弓是在木製弓內側貼上動物骨頭或肌腱來加強彈性和硬度。貼合兩者的明膠、也是由膠原蛋白而來。除此之外,膠原蛋白也用在底片的塗料上。 今日由於對野生動物的保護意識和替代材料的開發,皮草皮革不再像以前那樣常見,底片也被數位相機取代。但膠原蛋白作為美容、醫療修

補,還有生物醫學植入材料受到矚目。若說由植物產生的材料中最重要的是纖維素,那麼動物材料裡最重要的就是膠原蛋白。   ▌運用最廣泛的金屬王者 鐵是材料之王。但鐵本身是柔軟的白色金屬,需要和其他金術製成合金才能擁有堅硬的優點,且容易鏽蝕,融點高達一五三五度,需要一定技術才能加工。鐵的優勢在於(和其他金屬比較下)易於取得。如果黃金的是稀少尊貴的代表,鐵就是能廉價大量生產的代表。 為什麼鐵的存在數量比其他金屬多?作者認為解答在核物理學中。人體由許多元素構成,包括碳、氧還有鐵等元素。這些元素是從星星而來。像太陽這樣的恆星內部超過一千萬度以上的高溫裡,核融合產生新的元素,我們的太陽中進行的是氫的融合,產生

了氦。更加古老而巨大的恆星中則有更重的原子融合出更重的元素,但並非永無止境。元素合成的界線就是鐵,是最安定的存在。地球上的重金屬還有人體中的重元素,可以說都是星星的碎片。現在的宇宙最多的仍是氫元素,和排名第二的氮元素總和大約佔全宇宙百分之九九點八七。但經過數百億數千億年後,鐵的比例會逐漸增加,最後變成都是鐵素的寂靜空間。 後半作者以鐵合金中最重要的鋼為切入,從西臺人和鐵的歷史說起。西臺人因鍛造鐵器而興盛,衰亡可能為了鍛造而跟過度砍伐森林有關。另一假設是西臺人為了尋求森林資源東進,後被稱為韃靼人。西臺帝國以及製鐵技術擴散的歷史還有很多疑問尚待證明。後半則是介紹日本刀的鍛造,還有不銹鋼的歷史。 從

西臺以來人類進入鐵器時代,恐怕鐵會持續材料之王的寶座直到人類消亡。   ▌纖維素造就了傳播之王 纖維素是地球上最大量的有機化合物,全球植物每年共可產出一千億噸。這樣大量的素材實際已被人類廣泛運用,從布料、食品、藥物錠劑都有纖維素,其經過化學加工後在高科技製品中也是不可缺的材料。但生活中最常間的纖維素製品應該是紙。 本章中作者從蔡倫的發明談起,蔡倫發明的紙重要性在於不但原料價格低廉,品質亦大幅提升,使得文化易於保存和傳播,並使中國能發展出書法等藝術。科舉制度能持續到二十世紀,紙的存在也功不可沒。作者從化學角度解釋纖維素的強韌和特點,並介紹了製紙技術在日本的發展以及和紙的特點,還有製紙技術因怛羅斯

之役傳到西方,以及印刷術的發展等。 纖維素作為主要知識和情報載體的王者地位,直到二十世紀後半才因磁性紀錄載體的出現而受到威脅。但陪伴人類兩千年的紙,作為材料也出現了大進展,那就是奈米纖維素(Nanocellulose)的出現,具有輕量而高強度的特點,混合其他材料可能製作出能通電的紙。雖然目前仍有成本高昂的缺點,未來的應用範圍相當廣泛,或許會成為今後社會發展的關鍵吧。   ▌千變萬化的碳酸鈣   若説鐵是材料的王者,碳酸鈣就是大明星。碳酸鈣來自石灰岩,即便是資源貧乏的日本也相當豐富。從教室裡的粉筆到食品添加物,濕壁畫的使用材料,碳酸鈣用途廣泛,在藝術上嘉惠人類良多。作者從地科角度說明碳酸鈣在地球

大量存在的理由。地球誕生時大量二氧化碳溶於海水,並和海底火山噴發的鈣元素結合,這讓地球大氣裡的二氧化碳比例下降,降低氣溫。和地球大小和質量類似的金星就沒那麼好運,海洋在吸收二氧化碳前就被蒸發,結果殘留大量二氧化碳,溫室效應讓溫度高達四百度以上。 石灰和木灰是最易取得的鹼性材料。粉碎的石灰石或貝殼經燒過後的生石灰具有殺菌效果,且能用來照明。石灰能調節土地酸鹼,是糧食生產的重要物質,也能用在防止病蟲害上。宮澤賢治也曾為推廣石灰的使用而奔走。但石灰最重要的用途是作為水泥,能用做建材,其中最能有效利用的就是羅馬人。條條大路通羅馬,固定大路表面的石板還有各種公共建築的都是水泥。 後半段作者則將重點放在海

洋生物。地球誕生時融入海水的二氧化碳也對海生物造成的影響,形成他們禦敵的硬殼。現在能有那麼多大量便宜的攤酸鈣能使用,也是受惠於當時的海中生物。然而碳酸鈣產物也有高價品,即是珍珠。作者在此介紹了珍珠的歷史、日本養殖業的發展,最後提到珊瑚礁和地球暖化危機。   ▌編織出帝國的柔軟素材 作者回憶小學時社會科背誦的地圖符號裡有「桑田」記號,由於當時周遭環境裡已經看不到桑田,作者一直對這個記號抱著疑惑。在昭和初年,桑田面積占日本農地四分之一,大約四成的農家養蠶,這也對日本農家建築和習俗產生影響。『日本書紀』和中國神話都顯示絹很早就出現在人類歷史中,也影響到日本的漢字。 絹觸感光滑,帶有光澤且耐用,並具有

透氣性且能保溫,理由是其成分絲蛋白的性質以及製程上。作者從化學結構和纖維形狀來解釋原因,並介紹絲路的歷史、以及日本從平安朝到現代的養蠶取絲歷史,包括蠶的品種改良、製絲工廠在日本現代化過程的角色。在化纖取代蠶絲的現在,桑田的地圖符號已在二零一三年廢止,科技也將目標轉向蜘蛛絲的利用,或許也可能有強化蠶絲的出現。   ▌運動與交通的世紀革命 二○一七年富比世公布的運動員收入排行榜裡,前百大中球類運動就占了九十名。風靡全球的球類運動裡,許多是在十九世紀後半誕生。這些運動中,比如足球擁有悠久歷史,棒球最初的比賽方式和現在完全不同,但都在差不多的時期裡大幅發展,作者認為這是因為品質優良的橡膠普及,讓球本身

能大幅改良且有穩定品質的緣故。作者接下來介紹了天然橡膠的產生,並從化學結構來說明橡膠有彈性的秘密。哥倫布第二次航行中發現橡膠並帶回歐洲, 英國化學家發現他能擦去鉛筆字跡。但橡膠能被廣泛使用,則是在固特異發明硫化處理使得汽車發明產生交通革命。作者再次提起材料和時代的關係性,他認為如果是中國道士取得橡膠,或許是否也能發明加硫法,若是把橡膠交給羅馬人,是否能讓幫助羅馬帝國更加擴張。想像各種可能,也是一種樂趣。   ▌地球兩端的吸引,開發了強力磁鐵的應用 為什麼磁鐵能吸引鐵的謎直到二十世紀才被解開,最簡單的說法就是電子旋轉產生磁性。電子的旋轉方向有兩種,一般物質中兩者數量相同,抵消了磁力,但由於鐵的原

子構造特殊,無法抵銷,因此產生磁性。人類發現磁鐵時間尚無定論,中一個說法是遊牧民族的鞋或拐杖上的鐵製品吸住了黑色的磁石,而發現了天然磁鐵。最早利用磁鐵的是中國人。作者在此介紹了指南車和「天子南面」的由來,還有鄭和下西洋的歷史,以及古代人因磁石「偏角」現象產生的困擾。伊能忠敬在一八一七年繪製出正確的日本地圖,他的仔細測量是最大的因素,但也受惠於當時日本附近的偏角近乎於零的運氣。 作者接下來介紹了物理學上第一部闡述磁學的專門著作《論磁石》,再從地球的地磁場延伸到近代電磁學的誕生以及在記錄媒體上的應用。最後則介紹了近代日本對強力磁鐵的開發。 ▌人類在天空遨翔的最大功臣 鋁是地球上非常普遍的元素,在地

表上的含量僅次與氧和矽,排行第三。但由於鋁和氧的結合太強,長久以來都是以氧化狀態存在,直到一八二五年才首次被提煉成金屬。具有輕盈、合成後有能有一定強度的優點,鋁作為金屬被人類使用的歷史卻只有兩百年左右,直到二十世紀才確立了量產方式而被廣泛使用。 作者本章中介紹了鋁的歷史,丹麥化學家成功提煉出鋁,以及法國拿破崙三世對鋁的熱愛,還有十九世紀分別成功提煉出鋁的美國科學家。並從化學角度解釋鋁為何輕盈、以及如此容易氧化的元素為什麼位是不易鏽蝕的材料,以及鋁在飛機製造上的應用等等。 ▌無所不在的塑膠改善了人類的生活也污染了未來 作者幼年裝著果汁的玻璃瓶,在一九八二年的食品修正法後被塑膠取代。輕盈,耐用,價

格低廉又容易形塑和上色,還可製作出不同的強度跟機能,塑膠取代了許多素材被應用在今天的日常生活、甚至航太用途上。而最早察覺到塑膠的人是誰呢?作者從工匠獻杯給羅馬皇帝的故事推測,那個不會粉碎的玻璃杯說不定就是塑膠材質的。作者引用日本工業規格的定義,塑膠是一種以高分子物質為主原料以人工製成各種用途的固體,並從分子和化學結構來說明這個定義,並介紹人工合成樹脂的歷史,從十九世紀的硝化棉、到二十世紀確立高分子的概念,到尼龍、聚乙烯的發明以及量產。最後提及塑膠的未來發展以及海洋污染的問題。   ▌影響近代科技最主要的元素:矽 僅僅一個世代,電腦就從企業或是研究機構裡的巨大機器化身為智慧型手機,成為日常生活的

一部份,這數十年來的社會變化,也有許多和電腦有關,因此矽是代表現代社會的材料。 在過去,人類也為了精密計算打造出各種工具,作者從古代希臘人打造用來計算天象的安提基特拉機械開始介紹,談及十七世紀著名的數學家帕斯卡、萊普尼茲設計過齒輪式的計算機,被視為電腦先驅巴貝奇的計算裝置開發、到真空管電腦的誕生。但電腦能發展成今日的樣貌,還是因為矽。 矽和氧是週期表上下相鄰的元素,性質類似,但在生物界幾乎沒有矽的存在。作者從此出發介紹矽的特性、化學構造以及用途,還有半導體從鍺到矽的發展過程,以及對電腦、人工智慧等產業的影響。  

改質生物炭吸附廢水中氨氮及硝酸根離子之研究

為了解決二氧化碳溶於水溫度的問題,作者曾子傑 這樣論述:

硝酸鹽是工業製程不可或缺的原料,由於其在水中的高穩定性和溶解性,導致工業廢水中常含有高濃度的硝酸根離子,因而形成高導電度廢水,近年來水中去除硝酸鹽成為廢水處理技術挑戰之一。本研究利用農業廢棄物製備生物炭,並整合共沉澱法,以「氯化鎂(MgCl2)、氯化鈣(CaCl2)」製備成富含有Mg/Ca之層狀雙氫氧化物(Mg/Ca- double hydroxides)以成為新的複合材料吸附劑,探討其對水中硝酸根離子的吸附能力。研究發現當添加愈高鎂鈣比時LDHs中的鎂含量較高,但當在4:1和3:1的比例時卻有所不同,在3:1所披覆上的鎂較多。生物炭的孔洞接成蜂巢狀,孔洞直徑約為10微米,推測其可能為植物管

胞碳化後的組織形狀。此外,隨著鎂鈣比逐漸增加,生物碳的孔洞似乎愈加破碎。生物炭的比表面積隨著鎂鈣比增加而增加,其中3:1及4:1鎂鈣比的比表面積最高,約可達到100 cm2/g。3:1的Mg/Ca-LDHs在吸附時間約3分鐘時能有效吸附水中硝酸根離子,同時LDHs在吸附過程中維持穩定狀態。此說明3:1鎂鈣比生物炭LDHs不僅具有最佳的比表面積及鎂鈣LDHs吸附層,同時具有最佳的硝酸根離子吸附能力。