北斗gps比較的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

北斗gps比較的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 GPS/GNSS原理與應用(第3版) 和張漢威的 風險管理:肇事科學鑑定實務研究都 可以從中找到所需的評價。

另外網站北斗卫星导航系统跟GPS的对比怎样?有哪些优缺点?也說明:说起北斗卫星,相信大家之前都被北斗三号卫星的顺利发射刷屏了吧。也因为北斗三星卫星的成功发射,让中国卫星导航系统继美国GPS,欧洲伽利略,俄罗斯 ...

這兩本書分別來自電子工業 和新學林所出版 。

國防大學 戰略研究所 林穎佑所指導 陳龍豪的 北斗系列衛星導航系統之發展與應用 (2021),提出北斗gps比較關鍵因素是什麼,來自於中共航太發展、北斗系列衛星導航系統、軍事戰略、外交政策、軍民融合。

而第二篇論文國立中山大學 中國與亞太區域研究所 徐正戎所指導 林奎旭的 從《中國的北極政策》分析中國海軍極地艦隊 (2021),提出因為有 北極航道、北極理事會、中國的北極政策、中國海軍、極地艦隊的重點而找出了 北斗gps比較的解答。

最後網站迎合大陸用戶iPhone12首度支援北斗衛星導航 - 工商時報則補充:蘋果官網介紹,最新問世的iPhone 12系列4款機型規格顯示,內置GPS、GLONASS、Galileo、QZSS及北斗定位系統,明確支援美俄歐日中五大導航系統。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了北斗gps比較,大家也想知道這些:

GPS/GNSS原理與應用(第3版)

為了解決北斗gps比較的問題,作者 這樣論述:

本書詳細介紹了GPS、GLONASS、BeiDou、Galileo、QZSS和NavIC系統的**資訊,涵蓋了各個系統的星座配置、衛星、地面控制系統和使用者設備,提供了詳細的衛星信號特徵。   本書包括GNSS簡介、衛星導航基礎、全球衛星導航系統、GLONASS、伽利略系統、北斗衛星導航系統、區域衛星導航系統、GNSS接收機、GNSS擾亂、GNSS誤差、獨立GNSS的性能、差分GNSS和精密單點定位、GNSS與其他感測器的組合及網路輔助、GNSS市場與應用。   本書可作為高校相關專業學生學習GNSS基本知識的教材,也可供業內相關技術人員參考。 Elliott D. Kapl

an,美國麻塞諸塞州貝德福德MITRE公司首席工程師,美國紐約理工學院電氣工程理學學士,美國東北大學電氣工程理學碩士。自1986年以來,Kaplan先生一直積極參與GPS相關的政府計畫。他目前正在支持美國空軍研究實驗室航太飛行局和GPS理事會的活動,其中包括AFRL導航技術衛星3(NTS-3)的開發。 寇豔紅,博士,北京航空航太大學電子資訊工程學院副教授。長期從事衛星導航、通信與信號處理領域的科研和教學工作,擔任CSNC、ION GNSS/ITM、CPGPS、MMT等國際會議分會主席,中國第二代衛星導航系統重大專項專家組專家。已主持完成科研專案30余項,發表論文百餘篇、合著1部、譯著2部、標

準2部,獲授權發明專利十余項,獲省部級科技進步獎6項、校優秀教學成果獎2項。 第1章 引言 1 1.1 簡介 1 1.2 GNSS概述 1 1.3 全球定位系統 2 1.4 全球導航衛星系統 3 1.5 伽利略系統 4 1.6 北斗系統 5 1.7 區域系統 6 1.7.1 准天頂衛星系統 6 1.7.2 印度導航星座(NavIC) 7 1.8 增強系統 7 1.9 市場與應用 8 1.10 本書的結構 9 參考文獻 12 第2章 衛星導航基礎 13 2.1 利用到達時間測量值測距的概念 13 2.1.1 二維定位 13 2.1.2 衛星測距碼定位原理 15 2.2 參考坐

標系 17 2.2.1 地心慣性坐標系 17 2.2.2 地心地固坐標系 17 2.2.3 當地切平面(當地地平)坐標系 19 2.2.4 本體框架坐標系 20 2.2.5 大地(橢球)座標 21 2.2.6 高度座標與大地水準面 22 2.2.7 國際地球參考框架 23 2.3 衛星軌道基礎 24 2.3.1 軌道力學 24 2.3.2 星座設計 28 2.4 GNSS信號 33 2.4.1 射頻載波 33 2.4.2 調製 33 2.4.3 次級碼 36 2.4.4 複用技術 36 2.4.5 信號模型與特性 37 2.5 利用測距碼確定位置 41 2.5.1 確定衛星到用戶的距離 41

2.5.2 用戶位置的計算 43 2.6 求解使用者的速度 45 2.7 頻率源、時間和GNSS 47 2.7.1 頻率源 47 2.7.2 時間和GNSS 53 參考文獻 53 第3章 全球衛星導航系統 55 3.1 概述 55 3.1.1 空間段概述 55 3.1.2 控制段概述 55 3.1.3 用戶段概述 56 3.2 空間段描述 56 3.2.1 GPS衛星星座描述 56 3.2.2 星座設計指南 58 3.2.3 分階段發展的空間段 60 3.3 控制段描述 75 3.3.1 OCS的當前配置 76 3.3.2 OCS的進化 86 3.3.3 OCS未來計畫的升級 88 3.4

用戶段 89 3.4.1 GNSS接收機的特性 89 3.5 GPS大地測量和時標 93 3.5.1 大地測量 93 3.5.2 時間系統 94 3.6 服務 94 3.6.1 SPS性能標準 95 3.6.2 PPS性能標準 97 3.7 GPS信號 99 3.7.1 傳統信號 99 3.7.2 現代化信號 110 3.7.3 民用導航(CNAV)和CNAV-2導航數據 116 3.8 GPS星曆參數和衛星位置計算 120 3.8.1 傳統星曆參數 120 3.8.2 CNAV和CNAV-2星曆參數 121 參考文獻 123 第4章 全球導航衛星系統 126 4.1 簡介 126 4.2

空間段 127 4.2.1 星座 127 4.2.2 衛星 128 4.3 地面段 131 4.3.1 系統控制中心 131 4.3.2 中央同步器 131 4.3.3 遙測、跟蹤和指揮 132 4.3.4 鐳射測距站 132 4.4 GLONASS使用者設備 132 4.5 大地測量學與時間系統 133 4.5.1 大地測量參考坐標系 133 4.5.2 GLONASS時間 134 4.6 導航服務 135 4.7 導航信號 135 4.7.1 FDMA導航信號 135 4.7.2 頻率 136 4.7.3 調製 137 4.7.4 編碼特性 137 4.7.5 GLONASS P碼 138

4.7.6 導航電文 138 4.7.7 C/A碼導航電文 139 4.7.8 P碼導航電文 139 4.7.9 CDMA導航信號 140 致謝 142 參考文獻 142 第5章 伽利略系統 144 5.1 專案概述和目標 144 5.2 伽利略系統的實現 145 5.3 伽利略服務 145 5.3.1 伽利略開放服務 145 5.3.2 公共監管服務 146 5.3.3 商業服務 146 5.3.4 搜索與救援服務 146 5.3.5 生命安全服務 146 5.4 系統概述 146 5.4.1 地面任務段 149 5.4.2 地面控制段 152 5.4.3 空間段 153 5.4.4 運

載火箭 158 5.5 伽利略信號特徵 159 5.5.1 伽利略擴頻碼和序列 161 5.5.2 導航電文結構 162 5.5.3 正向糾錯編碼和塊交織 163 5.6 互通性 164 5.6.1 伽利略大地參考坐標系 164 5.6.2 時間參考坐標系 164 5.7 伽利略搜索和救援任務 165 5.7.1 SAR/Galileo服務描述 165 5.7.2 歐洲SAR/Galileo覆蓋區域和MEOSAR環境 166 5.7.3 SAR/Galileo系統架構 168 5.7.4 SAR頻率計畫 170 5.8 伽利略系統性能 172 5.8.1 授時性能 172 5.8.2 測距性能

173 5.8.3 定位性能 176 5.8.4 最終運營能力的預期性能 177 5.9 系統部署完成FOC的時間 178 5.10 FOC之後系統伽利略的發展 179 參考文獻 179 第6章 北斗衛星導航系統 181 6.1 概述 181 6.1.1 北斗衛星導航系統簡介 181 6.1.2 北斗的發展歷程 182 6.1.3 BDS的特點 185 6.2 BDS的空間段 186 6.2.1 BDS星座 186 6.2.2 BDS衛星 190 6.3 BDS控制段 191 6.3.1 BDS控制段的組成 191 6.3.2 BDS控制段的運行 192 6.4 大地測量參考系和時間參考系

192 6.4.1 BDS坐標系 192 6.4.2 BDS時間系統 193 6.5 BDS服務 193 6.5.1 BDS服務類型 193 6.5.2 BDS RDSS服務 194 6.5.3 BDS RNSS服務 195 6.5.4 BDS SBAS服務 197 6.6 BDS信號 197 6.6.1 RDSS信號 197 6.6.2 BDS區域系統的RNSS信號 198 6.6.3 BDS全球系統的RNSS信號 205 參考文獻 207 第7章 區域衛星導航系統 209 7.1 准天頂衛星系統 209 7.1.1 概述 209 7.1.2 空間段 209 7.1.3 控制段 211

7.1.4 大地測量和時間系統 213 7.1.5 服務 213 7.1.6 信號 214 7.2 印度導航星座 217 7.2.1 概述 217 7.2.2 空間段 218 7.2.3 NavIC控制段 219 7.2.4 大地測量和時間系統 221 7.2.5 導航服務 223 7.2.6 信號 223 7.2.7 應用和NavIC使用者設備 224 參考文獻 225 第8章 GNSS接收機 228 8.1 概述 228 8.1.1 天線單元和電子設備 229 8.1.2 前端 230 8.1.3 數位記憶體(緩衝器和多工器)和數位接收機通道 230 8.1.4 接收機控制和處理、導航控

制和處理 230 8.1.5 參考振盪器和頻率合成器 230 8.1.6 使用者和/或外部介面 231 8.1.7 備用接收機控制介面 231 8.1.8 電源 231 8.1.9 小結 231 8.2 天線 231 8.2.1 所需屬性 232 8.2.2 天線設計 232 8.2.3 軸比 234 8.2.4 電壓駐波比 236 8.2.5 天線雜訊 237 8.2.6 無源天線 238 8.2.7 有源天線 238 8.2.8 智慧天線 238 8.2.9 軍用天線 239 8.3 前端 239 8.3.1 功能描述 240 8.3.2 增益 241 8.3.3 下變頻方案 242 8.

3.4 輸出到ADC 242 8.3.5 ADC、數位增益控制和類比頻率合成器功能 243 8.3.6 ADC實現損耗及設計示例 244 8.3.7 ADC取樣速率與抗混疊 247 8.3.8 ADC欠採樣 249 8.3.9 雜訊係數 251 8.3.10 動態範圍、態勢感知及對雜訊係數的影響 251 8.3.11 與GLONASS FDMA信號的相容性 253 8.4 數位通道 254 8.4.1 快速功能 254 8.4.2 慢速功能 267 8.4.3 搜索功能 271 8.5 捕獲 286 8.5.1 單次試驗檢測器 286 8.5.2 唐檢測器 289 8.5.3 N中取M檢測器

291 8.5.4 組合唐與N中取M檢測器 293 8.5.5 基於FFT的技術 293 8.5.6 GPS軍用信號直捕 295 8.5.7 微調多普勒與峰值碼搜索 301 8.6 載波跟蹤 301 8.6.1 載波環鑒別器 302 8.7 碼跟蹤 306 8.7.1 碼環鑒別器 306 8.7.2 BPSK-R信號 308 8.7.3 BOC信號 310 8.7.4 GPS P(Y)碼無碼/半無碼處理 311 8.8 環路濾波器 311 8.8.1 PLL濾波器設計 313 8.8.2 FLL濾波器設計 314 8.8.3 FLL輔助PLL濾波器設計 314 8.8.4 DLL濾波器設計 3

15 8.8.5 穩定性 315 8.9 測量誤差和跟蹤門限 323 8.9.1 PLL跟蹤環測量誤差 323 8.9.2 PLL熱雜訊 323 8.9.3 由振動引起的振盪器相位雜訊 325 8.9.4 艾倫偏差振盪器相位雜訊 326 8.9.5 動態應力誤差 327 8.9.6 參考振盪器加速度應力誤差 327 8.9.7 總PLL跟蹤環測量誤差與門限 328 8.9.8 FLL跟蹤環測量誤差 330 8.9.9 碼跟蹤環測量誤差 331 8.9.10 BOC碼跟蹤環測量誤差 336 8.10 偽距、?偽距和積分多普勒的形成 337 8.10.1 偽距 338 8.10.2 偽距 347

8.10.3 積分多普勒 348 8.10.4 偽距載波平滑 349 8.11 接收機的初始工作順序 350 8.12 數據解調 352 8.12.1 傳統GPS信號解調 353 8.12.2 其他GNSS信號的資料解調 356 8.12.3 資料誤位元速率比較 357 8.13 特殊的基帶功能 358 8.13.1 信噪功率比估計 358 8.13.2 鎖定檢測器 360 8.13.3 周跳編輯 365 參考文獻 371 第9章 GNSS擾亂 374 9.1 概述 374 9.2 干擾 374 9.2.1 干擾類型與干擾源 374 9.2.2 影響 377 9.2.3 干擾抑制 397 9

.3 電離層閃爍 400 9.3.1 基礎物理 400 9.3.2 幅度衰落與相位擾動 400 9.3.3 對接收機的影響 401 9.3.4 抑制 402 9.4 信號阻塞 402 9.4.1 植被 402 9.4.2 地形 403 9.4.3 人造建築物 406 9.5 多徑 407 9.5.1 多徑特性及模型 408 9.5.2 多徑對接收機性能的影響 410 9.5.3 多徑抑制 416 參考文獻 417 第10章 GNSS誤差 420 10.1 簡介 420 10.2 測量誤差 420 10.2.1 衛星鐘誤差 421 10.2.2 星曆誤差 424 10.2.3 相對論效應 42

7 10.2.4 大氣效應 429 10.2.5 接收機雜訊和解析度 440 10.2.6 多徑與遮蔽效應 440 10.2.7 硬體偏差誤差 441 10.3 偽距誤差預算 444 參考文獻 444 第11章 獨立GNSS的性能 446 11.1 簡介 446 11.2 位置、速度和時間估計的概念 446 11.2.1 GNSS中的衛星幾何分佈和精度因數 446 11.2.2 GNSS星座的DOP特性 450 11.2.3 精度指標 453 11.2.4 加權最小二乘 456 11.2.5 其他狀態變數 456 11.2.6 卡爾曼濾波 457 11.3 GNSS可用性 458 11.3.

1 使用24顆衛星的標稱GPS星座預測GPS可用性 458 11.3.2 衛星故障對GPS可用性的影響 459 11.4 完好性 465 11.4.1 關於危險程度的討論 465 11.4.2 完好性異常的來源 465 11.4.3 完好性改進技術 467 11.5 連續性 475 11.5.1 GPS 475 11.5.2 GLONASS 476 11.5.3 伽利略 476 11.5.4 北斗 476 參考文獻 476 第12章 差分GNSS和精密單點定位 478 12.1 簡介 478 12.2 基於碼的DGNSS 479 12.2.1 局域DGNSS 479 12.2.2 區域DGN

SS 482 12.2.3 廣域DGNSS 482 12.3 基於載波的DGNSS 484 12.3.1 基線的即時精準確定 484 12.3.2 靜態應用 497 12.3.3 機載應用 498 12.3.4 姿態確定 500 12.4 精密單點定位 501 12.4.1 傳統PPP 501 12.4.2 具有模糊度解算的PPP 503 12.5 RTCM SC-104電文格式 506 12.5.1 2.3版 506 12.5.2 3.3版 508 12.6 DGNSS和PPP示例 509 12.6.1 基於碼的DGNSS 509 12.6.2 基於載波 524 12.6.3 PPP 527

參考文獻 528 第13章 GNSS與其他感測器的組合及網路輔助 531 13.1 概述 531 13.2 GNSS/慣性組合 532 13.2.1 GNSS接收機性能問題 532 13.2.2 慣性導航系統綜述 534 13.2.3 卡爾曼濾波器作為系統組合器 539 13.2.4 GNSSI組合方法 542 13.2.5 典型GPS/INS卡爾曼濾波器設計 544 13.2.6 實現卡爾曼濾波器的注意事項 548 13.2.7 可控接收模式天線的組合 548 13.2.8 跟蹤環路的慣性輔助 550 13.3 陸地車輛系統中的感測器組合 555 13.3.1 引言 555 13.3.2

陸地車輛增強感測器 558 13.3.3 陸地車輛感測器組合 571 13.4 A-GNSS:基於網路的捕獲和定位輔助 576 13.4.1 輔助GNSS的歷史 578 13.4.2 應急回應系統要求和指南 579 13.4.3 輔助資料對捕獲時間的影響 584 13.4.4 無線設備中的GNSS接收機集成 588 13.4.5 網路輔助的來源 590 13.5 移動設備中的混合定位 601 13.5.1 引言 601 13.5.2 移動設備增強感測器 602 13.5.3 移動設備感測器組合 607 參考文獻 609 第14章 GNSS市場與應用 613 14.1 GNSS:基於支援技術

的複雜市場 613 14.1.1 簡介 613 14.1.2 市場挑戰的定義 614 14.1.3 GNSS市場的預測 615 14.1.4 市場隨時間的變化 616 14.1.5 市場範圍和細分 617 14.1.6 政策依賴性 617 14.1.7 GNSS市場的特點 617 14.1.8 銷售預測 618 14.1.9 市場局限性、競爭體系和政策 618 14.2 GNSS的民用應用 619 14.2.1 基於位置的服務 619 14.2.2 道路 620 14.2.3 GNSS在測繪、製圖和地理資訊系統中的應用 621 14.2.4 農業 621 14.2.5 海洋 622 14.2.

6 航空 623 14.2.7 無人駕駛飛行器和無人機 624 14.2.8 鐵路 625 14.2.9 授時與同步 625 14.2.10 空間應用 625 14.2.11 GNSS室內挑戰 626 14.3 政府及軍事應用 626 14.3.1 軍事使用者設備:航空、船舶和陸地 626 14.3.2 自主接收機:智慧型武器 627 14.4 結論 628 參考文獻 628 附錄A 最小二乘和加權最小二乘估計 629 參考文獻 629 附錄B 頻率源穩定度測量 630 B.1 引言 630 B.2 頻率標準穩定度 630 B.3 穩定度的測量 631 B.3.1 艾倫方差 631 B.3.

2 哈達瑪方差 631 參考文獻 632 附錄C 自由空間傳播損耗 633 C.1 簡介 633 C.2 自由空間傳播損耗 633 C.3 功率譜密度與功率通量密度的轉換 635 參考文獻 635

北斗gps比較進入發燒排行的影片

iPhone 12 系列必買嚴選配件:https://lihi1.cc/VnHIF
想要超高速 iPhone 充電就看這邊~
--
NOW! 成為陳寗頻道會員並收看獎勵影片:https://lihi1.com/ZT8bZ
頻道會員經費用於製作字幕及剪接,懇請支持頻道營運!
陳寗嚴選 iPad Pro/iPhone 保貼:https://lihi1.cc/VnHIF
陳寗嚴選兩聲道音響:https://lihi1.com/2ecL7
陳寗嚴選抗菌靜電濾網/防潑水抗菌強化膜:https://lihi1.cc/x7Sse

#iPhone12 #iPhone #Apple

──────
本頻道每晚 6 點鐘上新片,還有幾個原則跟你約定好:

1. 開箱零業配:
真實使用過後才發表心得,通常試用至少 1 個月,所以你通常不會看到我最早發表,但哥真性情的評論,保證值得你的等待。

2. 理性討論:
我有自己的偏好,你也有自己的好惡,我們互相尊重,時時用大腦,刻刻存善念,不謾罵,不矯情。可以辯論,不可以沒邏輯。

3. 我團購我驕傲:
我很愛買東西,也很愛比較產品,我自己使用過、多方比較過,還是覺得喜歡的東西,我才會辦團購。(簡單說就是挑品很嚴格,至今 80% 廠商找上門都被我打槍。)辦團購我一定有賺,但我跟廠商拿到提供給你的團購價,也會讓你一定有划算感。所以如果你品味跟我相近,或是剛好有需要,就跟我團購,我們互惠。如果你覺得跟我團購,你就是我乾爹,說話不懂得互相尊重,那就慢走不送,你可以去找一般店家買貴一點。

看了以上,覺得可以接受就請你訂閱,訂閱順便開鈴鐺。我們每天晚上 6 點見。

我的網站連結在這:https://ningselect.com/
也別忘了幫我的 FB 粉絲專頁按讚:http://bit.ly/ningfb

如果有任何問題,包括團購等問題,都可以在影片下方留言問我,同一支影片下很多人都想知道的問題會優先用留言回答,如果是比較大的題目,則有機會拍成 QA 影片回答~如果你想問的是針對個人的音響選購、配置問題,可以直接傳 Line 問我:http://bit.ly/ningline

另外團購商品請參考我的商城:https://shop.ningselect.com/
廠商合作請先了解相關原則:http://bit.ly/coopning

北斗系列衛星導航系統之發展與應用

為了解決北斗gps比較的問題,作者陳龍豪 這樣論述:

本研究聚焦於北斗系列衛星導航系統發展與應用情形,且結合中共當前運用概況為例證,瞭解現今北斗系列衛星導航系統為中共所帶來的利益與全球布局所造成的影響。綜觀歷史,在近代科技競爭中,掌握航太科技就意味著掌握勝算,衛星導航系統強弱則是航太科技的制高點。所以,未來強國競爭中,取得「制天權」將視同掌控強權一般,都將對國家軍事戰略、外交政策、軍民融合與民生經濟產生關鍵的影響。冷戰結束後,中共提出「打贏高科技條件下局部戰爭」的軍事準則,當時中共的軍事思維已具有制天權的宏觀,並投入大量的資源和人力,建立以太空為主導的軍事戰力。創造出中共所自主研製的北斗系列衛星導航系統。目前能力已覆蓋全球範圍。本文並將評估中共

「北斗系列衛星導航系統」現今國內和全球當前發展與應用概況;同時,對我國家安全可能造成的威脅,以及提出相關因應之道。關鍵詞:中共航太發展、北斗系列衛星導航系統、軍事戰略、外交政策、軍民融合

風險管理:肇事科學鑑定實務研究

為了解決北斗gps比較的問題,作者張漢威 這樣論述:

  一件道路交通事故的發生,輕者破財,重者受傷,更重者喪命,甚至傾家蕩產。對一個人的生命價值,可說是影響深遠,然其中所涉及的種種公平、公正的機制,就一個法治的國家與社會來說,它是建立在用路人(知法與守法)的觀念與行為上。因此,法律、法規、法令必須建立在每一位用路人的思想行為裡,才能達成一個理想的安和樂利社會。然而執法者、裁判者、鑑定者、和解者、審判者更是用路人知法與守法的守護神。因此,其責任與義務,遠大於用路人,其法律素養與法理知識,更是其必修、必研的主要課程。否則,難能擔當如此重責大任。學術非法律、專業非技術、必須相互融合、相互砌磋才能進步,也才能為21世紀的現代化社會所

能容忍與接受的。本研究即是根據此論點作深入廣泛的討論與分析研究以謀改進之道,並做為推廣交通安全教育訓練的參考。   本書是從風險管理的宏觀理念,以法理為核心的思維程序,依人、車、路、長、寬、高、時、空、力多維空間的立體科學技術,詮釋道路交通法『注意與禮讓』的反應能力與條件,是否符合侵權行為/信賴原則/善盡原則/因果關係的『法理』精神,還原事故再現,探討交通事故的肇事因素以釐清肇事責任,保障受害人的合法權益(理賠與和解),以維護:公平與正義的司法精神。  

從《中國的北極政策》分析中國海軍極地艦隊

為了解決北斗gps比較的問題,作者林奎旭 這樣論述:

全球暖化使得北極冰融速度加快,使得北極圈冰覆區域縮小,北極地區冰融已是不可逆的事實,冰融化後無形中一條貫穿北極、連接太平洋與大西洋的海上捷徑「北極航線」應運而生,「北極航線」開通之後,世界海運格局將會改變,對國際貿易、經濟與政治等產生巨大的影響,北極地緣政治也將隨之改變。中國為全球第二大經濟體,海運貿易往來頻密,「北極航線」無疑為中國開拓一條新的航路。2018年1月26日中國公布《中國的北極政策》白皮書,是中國首份詳細論述北極立場的官方文件,北極政策的戰略目標是「維護和促進北極的和平與穩定,保障海上貿易、海上作業和運輸安全」,而海軍是維護海上安全的重要角色,中國海軍未來必然參與北極事務。對此

,中國海軍必須打造一支具有能力適應北極極端氣候,並能應對北極非傳統威脅的海軍艦隊,方能確保在北極的利益。1990年以降,中國海軍經過軍事現代化的努力,始得海上軍事力量倍速成長,已經成為國際關注焦點,並視之為威脅的擴張,這給中國海軍進軍北極之路增添了不穩定因素,為避免「中國北極威脅論」蔓延,以及考量北極地緣政治複雜,中國海軍如何「隱而不顯」的低調進入北極區域,可以被國際社會接受支持,所應該採取的路徑,將特別著重「合法」、「合理」與「合作」。中國海軍在印度洋透過常態性海外軍事部署,以及在吉布地興建第一座海外基地,奠定了中國海軍在印度洋的軍事存在。基此,中國是否會仿效亞丁灣護航模式,將海權拓展至北極

,在北極區域保有一定的軍事存在,亞丁灣護航成功的實例能否複製在北極,非常值得研究的議題。