柴油揮發的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

柴油揮發的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦薛慧峰寫的 氣相色譜及其聯用技術在石油煉製和石油化工中的應用 和(英)馬克·米奧多尼克的 迷人的液體(彩圖版):33種神奇又危險的流動物質和它們背後的科學故事都 可以從中找到所需的評價。

這兩本書分別來自化學工業 和天津科學技術所出版 。

中原大學 環境工程學系 趙煥平所指導 吳怡慧的 醇類增加輕質非水相液體揮發應用於整治受柴油污染地下水之可行性研究 (2016),提出柴油揮發關鍵因素是什麼,來自於醇類、共揮發、柴油、空氣注入法、土壤蒸氣萃取。

而第二篇論文國立中央大學 環境工程研究所在職專班 林居慶所指導 陳淑珍的 探討柴油風化過程中其化學指紋圖譜與生物指標特徵因子受揮發作用所造成之影響 (2014),提出因為有 生物標誌物、特徵因子比值、化學指紋、揮發、風化的重點而找出了 柴油揮發的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了柴油揮發,大家也想知道這些:

氣相色譜及其聯用技術在石油煉製和石油化工中的應用

為了解決柴油揮發的問題,作者薛慧峰 這樣論述:

本書共分9章,主要內容包括氣相色譜基礎知識、石油煉製與石油化工產品簡介、氣態混合烴的分析、輕質餾分油的分析、中間餾分油和重油的分析、石油化工有機小分子和中間產品的分析、高分子聚合物的分析、石油煉製和石油化工生產應急分析、石油煉製和石油化工色譜分析注意事項。本書具有較強的技術性和針對性,可供從事石油煉製和石油化工分析的技術人員、檢測人員,從事石油煉製和石油化工技術開發人員參考,也可供高等學校石油工程、化學工程及其相關專業師生參閱。 薛慧峰 中國石油天然氣股份有限公司石油化工研究院(分析室),副主任、高級工程師,從事石油煉製與石油化工分析方法研究和標準制修訂29年,主要研究方

向石油煉製與石油化工氣相色譜、氣相色譜-質譜分析技術。負責中國石油研究課題2項、蘭州石化公司課題8項,發表期刊論文近30篇,制修訂國際標準、行業標準和企業標準等共計11項,申請專利9件,獲中國石油科技進步二等獎1項、石油化工研究院科技進步二、三等獎6項。 自工作以來,一直在石油煉製與石油化工生產和科研一線從事分析檢測、分析方法研究和標準制修訂工作。根據蘭州石化公司生產需要,先後參加了“毫秒爐技術攻關”“毫秒爐裝置達標標定”“FCC 液態回收丙烯技術改造”“LLDPE 技術攻關”“西北原油評價”“輕質油裂解生產乙烯性能評價研究”“腈綸發黃原因分析”“24 萬噸乙烯擴建”“C5餾分分離裝置設計”

“瓶蓋專用料氣味異常技術攻關”“裂解汽油加氫催化劑中毒原油分析”“催化裂化汽油芳構化技術研究”等重點項目,負責完成了關鍵資料的分析研究和測試工作,為蘭州石化公司技術改造、產品品質提高、產品結構調整、裝置改造設計提供了科學依據。 參加石化研究院多項課題的研究工作,如“裂解汽油加氫系列催化劑開發”“環保型丁苯橡膠技術開發”“合成橡膠工業廢水處理”“降低MTBE中硫含量技術開發”“低成本清潔油品生產技術開發與工業應用”等,結合科研和生產需求,獨立完成了 “Ziegler-Natta 催化劑製備中氯丁烷色譜分析方法的改進”“毛細管氣相色譜測定石腦油的多項性質指標參數”“丙烯腈中噁唑及其它雜質的分析方

法”“FCC汽油改質生成油PONA值分析方法”“裂解汽油C5、C9餾分組成分析”“液態烴中硫化物分析”等。 第1章 氣相色譜基礎知識1 1.1色譜發展簡史1 1.2色譜基本理論3 1.2.1色譜常用術語與定義3 1.2.2分離原理5 1.2.3色譜技術分類6 1.3氣相色譜技術7 1.3.1氣相色譜分類7 1.3.2氣相色譜儀組成8 1.4氣相色譜定性定量13 1.4.1氣相色譜定性13 1.4.2氣相色譜定量16 1.5氣相色譜分析前處理技術17 1.6氣相色譜聯用技術18 1.6.1前處理技術聯用18 1.6.2分離技術的聯用19 1.6.3檢測技術的聯用20 1.7氣

相色譜新技術21 1.7.1全二維氣相色譜技術21 1.7.2中心切割技術22 1.7.3快速氣相色譜儀23 1.7.4微型可擕式氣相色譜儀24 1.7.5氣相色譜-高分辨質譜聯用24 參考文獻25 第2章 石油煉製與石油化工產品簡介27 2.1石油開採產品28 2.2石油煉製主要產品28 2.3石油化工主要產品32 參考文獻37 第3章 氣態混合烴的分析38 3.1煉廠氣分析39 3.1.1煉廠氣組成39 3.1.2煉廠氣分析技術40 3.2天然氣分析51 3.2.1天然氣組成51 3.2.2天然氣分析技術51 3.3液化石油氣分析52 3.3.1液化石油氣組成52 3.3.2液化石油氣

烴組成分析52 3.3.3液化石油氣中硫化物分析54 3.4混合C4分析59 3.4.1混合C4組成59 3.4.2混合C4烴組成分析59 3.5氣態混合烴分析小結61 參考文獻62 第4章 輕質餾分油的分析63 4.1汽油及輕餾分油的種類及分析要求64 4.1.1不同輕質餾分油烴組成差異64 4.1.2不同汽油的分析要求70 4.2輕質餾分油的烴組成分析71 4.2.1烴族組成分析——多維氣相色譜技術71 4.2.2單體烴分析——單柱毛細管色譜技術80 4.2.3單體烴分析——全二維氣相色譜技術83 4.3裂解汽油烴組成分析84 4.3.1不同裝置裂解汽油烴組成分析84 4.3.2裂解汽油

切割過程的監控分析86 4.3.3裂解汽油加氫產物的分析88 4.3.4加氫產物芳烴抽提前後的分析92 4.4輕質餾分油中含氧化合物的分析93 4.4.1直餾汽油中微量含氧化合物分析93 4.4.2醚化汽油和車用汽油中含氧化合物分析技術95 4.5輕質餾分油中含硫化合物的分析102 4.5.1不同汽油餾分中含硫化合物的差異103 4.5.2汽油餾分中含硫化合物的測定106 4.5.3硫選擇性檢測器可能遇到的干擾問題114 4.5.4分析輕質餾分中含硫化合物的注意事項116 4.6輕質餾分油中含氮化合物分析117 4.6.1汽油餾分含氮化合物分析技術118 4.6.2不同輕質餾分中含氮化合物的分

析120 4.7車用汽油非常規添加劑的分析123 4.7.1常見車用汽油非常規添加劑123 4.7.2分析非常規添加劑的方法124 4.8輕質餾分油分析小結125 參考文獻126 第5章 中間餾分油和重質油的分析129 5.1中間餾分油130 5.1.1中間餾分油烴組成分析130 5.1.2柴油中含硫化合物的分析135 5.1.3柴油中含氮化合物的分析140 5.1.4柴油中酚類化合物的分析150 5.2重質油156 5.2.1重質油餾程分析156 5.2.2重質油硫氮元素分佈分析161 5.2.3重質油烴、硫、氮組成分析163 參考文獻168 第6章 石油化工有機小分子和中間產品的分析1

73 6.1主要中間產品和助劑174 6.2聚合單體乙烯和丙烯的分析174 6.2.1乙烯和丙烯中的雜質及其對催化劑的影響175 6.2.2乙烯和丙烯中的雜質的分析技術176 6.2.3乙烯和丙烯中烴雜質的分析178 6.2.4乙烯和丙烯中雜原子化合物的分析180 6.2.5分析乙烯和丙烯中微量痕量雜原子化合物注意事項185 6.3乙烯和丙烯聚合用其他材料的分析186 6.3.1第二聚合單體1-丁烯、1-己烯的分析186 6.3.2烯烴聚合所用異戊烷、己烷的分析190 6.3.3氯丁烷的分析193 6.3.4外給電子體196 6.4丁二烯的分析197 6.4.1聚合級丁二烯組成分析198 6.

4.2回收丁二烯分析200 6.4.3丁二烯中抽提劑、阻聚劑分析202 6.4.4迴圈乙腈的分析203 6.5異戊二烯和環戊二烯的分析205 6.5.1異戊二烯的分析205 6.5.2環戊二烯的分析208 6.6苯乙烯和丙烯腈的分析211 6.6.1苯乙烯的分析211 6.6.2丙烯腈的分析214 6.7甲基叔丁基醚的分析216 6.7.1甲基叔丁基醚中含硫化合物的分析216 6.7.2烴類和含氧化合物雜質的分析222 6.8芳烴223 6.8.1混合芳烴的分析224 6.8.2三苯的分析224 6.8.3乙苯脫氫產物的分析227 6.8.4芳烴抽提中環丁碸的分析228 6.9裂解C5的分析2

29 6.9.1裂解C5烴組成的分析229 6.9.2裂解C5中含硫化合物分析235 6.9.3分析裂解C5烴組成注意事項235 6.10裂解C9及加氫產物的分析237 6.10.1裂解C9的分析237 6.10.2裂解C9加氫產物的分析248 參考文獻251 第7章 高分子聚合物的分析254 7.1高分子聚合物分析需求及分析技術255 7.1.1高分子聚合物分析需求255 7.1.2分析聚合物的基本途徑及技術256 7.2聚合物中揮發性組分的分析257 7.2.1聚合物殘留單體的分析257 7.2.2聚合物殘留溶劑的分析260 7.3聚合物中半揮發物/難揮發物的分析263 7.3.1聚合物

中添加劑分析264 7.3.2聚合物中致毒性化合物分析269 7.4聚合物組成分析和鑒別280 7.4.1聚合物熱裂解規律280 7.4.2聚合物熱裂解產物影響因素281 7.4.3不同聚合物熱裂解產物291 7.4.4充油、硫化聚合物熱裂解分析294 7.4.5共混聚合物熱裂解分析299 7.5揮發物、添加劑、聚合物組成的同時分析307 7.5.1梯度熱解析-熱裂解與氣相色譜聯用308 7.5.2凝膠滲透色譜與氣相色譜、裂解氣相色譜聯用309 參考文獻311 第8章 石油煉製和石油化工生產應急分析314 8.1催化劑中毒原因分析314 8.1.1實例一煉廠丙烯聚合催化劑中毒原因分析315

8.1.2實例二高密度聚乙烯催化劑活性降低原因分析318 8.1.3實例三全密度聚乙烯裝置生產負荷下降原因分析320 8.1.4實例四裂解汽油加氫催化劑中毒失活原因分析322 8.2產品品質問題的分析328 8.2.1實例一高密度聚乙烯瓶蓋料異味問題分析328 8.2.2實例二脫硫汽油辛烷值降低原因分析330 8.2.3實例三丁酮幹點偏高原因分析334 8.2.4實例四甲苯蒸發殘留偏高原因分析336 8.3生產裝置結垢物/堵塞物的分析337 8.3.1實例一裂解C5分離裝置管線內結垢物338 8.3.2實例二脫碳五塔冷凝器附著結垢物的分析341 8.3.3實例三乙烯裝置101塔重急冷油段填料中

結垢物分析342 8.3.4實例四火炬罐堵塞物分析343 8.4生產中的其他異常問題346 8.4.1實例一乙烯裝置裂解產物CO偏高原因分析346 8.4.2實例二乙烯裝置裂解產物CO含量突增原因分析348 8.4.3實例三迴圈水質污染原因分析350 參考文獻353 第9章 石油煉製和石油化工色譜分析注意事項355 9.1分析應用注意事項355 9.1.1採樣及取樣進樣355 9.1.2色譜柱選擇安裝使用358 9.1.3檢測器的使用365 9.1.4定性分析366 9.1.5定量分析注意事項369 9.1.6其他注意事項372 9.2氣相色譜儀維護與故障排除373 9.2.1閥進樣系統維護

373 9.2.2液體自動進樣器維護374 9.2.3汽化室(進樣口)的維護375 9.2.4檢測器的維護375 9.2.5峰形異常問題的處理376 9.3儀器購置及驗收事項378 9.3.1儀器購置技術協定379 9.3.2儀器驗收380 9.3.3培訓381 參考文獻382 石油是重要的能源和化學品原料,石油產品和石油化工產品已經廣泛應用於各個領域,在國民經濟和日常生活中發揮著舉足輕重的作用。為了充分利用石油資源,更經濟、更有效地加工原油,獲取高品質的石油產品和後續的石油化工產品,在石油煉製和石油化工(石油煉化)生產與技術開發中需要深層次地分析研究原油、石油餾分和石油化

學品的物理化學性質。隨著資訊化技術和石油煉化行業自身的不斷發展,石油煉化生產的精細化、數位化和智慧化已經成為目前發展的新趨勢,這也符合中國製造2025五大工程之一——“智慧製造”的發展要求。在推行分子煉油和智慧煉廠的過程中,最基礎的輸入資訊就是原料、中間產品、最終產品的詳細資訊,這就需要通過精細地分析研究石油煉化生產原料及其產品,從分子層面去認識石油煉化生產的原料和產品的組成以及反應過程,為反應機理研究和創新性技術開發提供強有力的技術支撐,同時需要利用大資料庫,將各種資料綜合加工分析,提出優化方案,實現原油的最佳利用。 為了滿足石油煉化生產和技術研究中的分析需求,越來越多的分析技術已經應用於

石油煉化生產和技術開發過程,其中使用最多的是氣相色譜技術。氣相色譜分析技術已經貫穿於石油煉製和石油化工生產的全過程,從原油輕體組成分析到餾分油族組成分析、詳細烴組成分析、含硫和含氮化合物分析,從中間產品乙烯丙烯中微量痕量雜質分析到聚合物中殘留單體、添加劑和聚合物結構分析,均使用到氣相色譜及其聯用技術。氣相色譜技術是集分離和定性定量為一體的分析技術,其分離能力非常強,特別適合於石油煉化產品這類複雜體系的分析,可以為智慧煉廠和分子煉油設計、優化提供詳細的基礎資料。前處理技術、二維分離技術和高靈敏、高選擇性檢測技術的發展,進一步擴大了氣相色譜技術在石油煉化生產中的應用。在當今技術快速發展的時代,作為

一名石油煉化領域的氣相色譜分析者,除了熟知氣相色譜原理和基礎知識外,還應了解氣相色譜技術在石油煉化生產中的應用情況,瞭解石油煉化生產的基礎知識和分析需求,了解氣相色譜技術的新進展,掌握一些氣相色譜儀維護故障排除知識,這樣才能更好地服務於石油煉化生產和技術開發。本書將在這些方面給予氣相色譜分析者一定的幫助,為解決分析中的實際問題起到抛磚引玉的作用。 本書基本按照石油煉製、石油化工產品的生產順序,即原油、餾分油、二次加工的油品、石油化工中間體、化工小分子產品、聚合物等的生產順序,介紹氣相色譜及其聯用技術在此領域的應用。第1章、第2章簡單介紹了色譜技術的基本知識和石油煉化主要產品分佈,初次接觸本領

域的分析人員通過對這部分的閱讀可以對色譜技術和石油煉化產品有一個初步的瞭解。第3章~第5章介紹了氣相色譜在氣態混合烴、輕質餾分油、中間餾分油及重質油分析中的應用,重點介紹氣相色譜及其聯用技術在汽柴油組成、含硫化合物、含氮化合物、含氧化合物、非常規添加劑分析中的應用,並介紹了全二維色譜技術分析柴油烴組成含硫化合物、含氮化合物、含氧化合物的應用。第6章介紹氣相色譜在聚合單體和小分子中間產品分析中的應用,重點介紹聚合單體乙烯、丙烯、丁二烯中微量雜質的分析,以及中間產品混合芳烴、裂解C5、裂解C9的分析。第7章介紹氣相色譜及其聯用技術在聚合物分析中的應用,重點是聚合物殘留單體、聚合物添加劑和聚合物組成

分析。第8章針對石油煉化生產中突發的生產問題和產品品質問題,結合實際工作案例,介紹解決突發問題的應急分析思路、方案和相關應用。第9章根據實際工作經驗,針對石油煉化分析的特殊性,介紹了氣相色譜儀使用中應注意的事項和操作技巧,同時就氣相色譜儀購置和驗收提出了一些建議,供使用者參考。 本書主要具有以下特點: ① 針對性強,只針對石油煉製和石油化工(石油煉化)行業; ② 內容豐富,不僅介紹了氣相色譜及其聯用技術在石油煉化行業的應用,還介紹了一些石油煉化的基礎知識和分析研究熱點; ③ 實用性強,主要內容來自筆者及其分析團隊的工作實踐,與石油煉化生產和科研結合緊密,與氣相色譜儀規範使用結合緊密;

④ 引用標準多,在介紹相關產品分析時,引用了大量現行的相關國內外分析方法標準,便於使用者查找和比對分析,瞭解標準發展動向。 本書主要內容基於筆者及中國石油天然氣股份有限公司石油化工研究院蘭州化工研究中心的秦鵬、耿占傑、王芳和趙家琳等的研究結果;書中汽柴油部分含氮化合物、柴油酚類化合物、汽柴油烴組成全二維氣相色譜分析,以及重餾分油餾程分析內容,基於中國石油天然氣股份有限公司石油化工研究院分析研究室的史得軍、馬晨菲、陳菲、王春燕、曹青、林駿等的研究結果。本書凝聚了筆者及其分析團隊的智慧和結晶,同時也穿插介紹了國內外其他分析工作者的研究成果。在編著本書前及編著過程中,就圖書的編寫思路、設想和內容

與胡之德先生進行過多次討論,胡先生提出許多寶貴的意見和建議。在完成本書初稿後,再次請教了胡先生,胡先生不僅認真仔細地審閱了全部書稿,修正了一些錯誤、提出了意見和建議,還提筆為本書寫了序。在此對胡先生表示深深的感謝。 限於編著者水準及時間,書中難免出現不當和疏漏之處,懇請讀者提出寶貴意見和建議。 薛慧峰 2019年1月

柴油揮發進入發燒排行的影片

陳麗娜14日質詢指出,外籍漁工由港區入境應有體溫檢測及快篩,讓登革熱防制工作更全面;旗津、小港傳統漁場被後來的港務局劃為商港,應有收購漁船之配套;旗津漁港碼頭應設汽油加油站以保公安;船應該收購及輔導就業;過路溝易受重車輾壓而塌陷,希望水利局全面檢修。

海洋局長趙紹廉答詢表示,將和海巡署等單位研究如何做漁港的體溫檢測與快篩。當時修定商港法時,確實沒有考慮傳統漁場問題、研擬配套措施,海洋局已發文中央,請漁業署做好配套、考量如何 協助漁民。加油站部分,海洋局已在旗津漁港的西岸碼頭找到一塊土地,近日將進行會勘。水利局則承諾盡快進行過路溝檢修工作。

高雄市登革熱疫情防治作業很重要,但漁港登革熱防治很容易遭到忽略,高雄大大小小的漁港有16個,海洋局也曾邀請漁港周邊的漁業署、高雄區漁會、高市3大遠洋漁業公會、中油公司等公私部門宣導防制登革。陳麗娜認為,港區有眾多外籍漁工,他們如果從機場入境還有體溫檢測等機制,然而從港區入境就沒有,為防止境外登革熱傳進來,海洋署應設法補漏洞。

高雄港本是旗津、小港漁民的傳統漁場,漁民日治時代以前就在高雄港捕魚。後來港務局修商港法,大筆一劃,傳統漁場變成禁止補魚的商港,1999年底更公告台灣全島三海浬內海域不能捕魚,否則開單最重罰50萬。陳麗娜指出,漁民的傳統漁場被後來的商港所佔有,但商港法修法時全然沒有配套,這個歷史錯誤必須修正,政府應收購旗津、小港漁民的漁船,並輔導就業。

旗津碼頭只有柴油供應站,但仍有數百艘漁船要加汽油,連海巡署的船隻也有加汽油的需求。但因為碼頭沒有汽油加油站,漁民只好拿大桶到一般加油站,再送數百公尺到碼頭,每次都要來回五、六趟。汽油是高揮發性高危險物質,如果發生意外,漁民和居民都會受害。

水利局前幾日完成漢民路清疏,這裡常淹水,經漢民路附近30個里長反應才進行清疏,後來發現是過路溝阻塞得十分嚴重。陳麗娜指出,過路溝因重車輾壓、挖路等因素,經常淤塞、崩塌形成水路斷點,希望水利局能全面檢查。

醇類增加輕質非水相液體揮發應用於整治受柴油污染地下水之可行性研究

為了解決柴油揮發的問題,作者吳怡慧 這樣論述:

空氣注入法配合土壤蒸氣萃取為常見且行之有年的土壤地下水整治技術,具有設備建置容易及成本低廉等優勢,然而這項整治技術受到污染物揮發性的限制,常見揮發性較低的污染物如柴油、煤油等物質,將使得整治期程拉長或整治效果不彰,因此本研究應用醇類增加水中有機物揮發的性質,加強空氣注入法配合土壤蒸氣萃取對於柴油污染物的整治效果。本研究以模場模擬空氣注入法配合土壤蒸氣萃取進行實驗,模場實驗的時間依據污染物揮發性不同在1至48小時之間。實驗過程中以市售活性碳採樣管柱吸附揮發出的有機物蒸氣,參照標準方法以溶劑萃取活性碳之後,以氣相色層分析儀分析實驗結果,實驗條件將以加入不同碳數及濃度的醇類、不同有機質的土壤進行分

析比較。醇類增加有機物揮發延伸至共揮發理論,根據共揮發理論的研究結果,本研究選用正戊醇、正己醇、正庚醇三種醇類,以醇類濃度5、10 ppmv進行實驗,檢視醇類碳數增加及濃度增加,對於污染物揮發增加的效果;另外一項實驗條件則為加入不同有機質的土壤,根據研究土壤有機質會吸附有機物蒸氣造成揮發抑制,因此本研究以不同有機質的土壤進行實驗,評估有機質高低的影響。而污染物則分為兩個部分,第一部分為柴油組成的個別有機物,使用含碳數C9至C14的直鏈烷類;第二部分則使用市售柴油進行研究。研究結果顯示,由於柴油及其組成之單一化合物會於液面上方形成輕質非水相液體,低濃度的醇類於水中吸引有機物往氣液交界面移動的作用

力,並未對液面上方高濃度的輕質非水相液體造成顯著影響,有機物揮發未隨醇類濃度增加以及碳數不同有明顯變化的趨勢。此外因為輕質非水相液體受曝氣擾動而移動,各批次實驗受到的擾動強度不同,揮發結果並未相當穩定。柴油及其組成之化合物揮發質量未呈現隨土壤有機質含量提高而遞減的明顯趨勢,主因來自於高有機質土壤因為模場實驗曝氣、水含量增加產生龜裂的情形,土壤龜裂形成的優先流道使得有機物蒸氣直接穿過優先流道,而未穿過土壤受到土壤中有機質吸附,使得土壤對於揮發質量削減未呈現穩定。整體而言,本研究模擬實際整治狀況受限於設備無法完整呈現實際整治場址的狀況,污染物未受土壤介質及模場空間限制而移動、土壤水含量增加形成優先

流道,為造成實驗未呈現穩定的因素,在實際整治中也會面臨污染物受曝氣擾動導致污染範圍擴大的問題,規劃模場設備除了考慮現地整治所面臨的的環境之外,也必須考慮模場結構對於污染物的適用性。

迷人的液體(彩圖版):33種神奇又危險的流動物質和它們背後的科學故事

為了解決柴油揮發的問題,作者(英)馬克·米奧多尼克 這樣論述:

這是一本介紹液體及其特性的材料學科普書。作者馬克•米奧多尼克用專業的材料學知識為我們解讀了日常生活裡各種各樣的液體。在一次飛機旅行中,他看到了 從水、膠水到咖啡、葡萄酒、液晶顯示幕和洗手液等各種物質的碰撞。   從革命性的鋼筆和航空煤油,到自我修復道路和電腦的前沿研究,米奧多尼克運用他幽默風 趣的科學敘事,揭示了為什麼液體能在樹裡向上流,為什麼油是有黏性的,為什麼海浪能翻湧那麼遠,以及如何泡出一杯完美的茶,等等。 馬克•米奧多尼克, 倫敦大學學院材料科學教授,英國皇家工程學會會士,“英國百大影響力科學家”。他樂於為大眾講解材料科學知識,曾擔多部紀錄片主持人,包括英國廣播公司

(BBC)第二台製作的《發明的天才》。他還是倫敦大學學院製成研究中心主任。已出版暢銷書《迷人的材料》。   1. 易燃易爆的航空煤油、橄欖油、柴油、硝化甘油 2. 令人迷醉的葡萄酒、香水 3. 無堅不摧的波浪、液態核燃料 4. 黏結萬物的樹膠、動物明膠、橡膠、強力膠 5. 如夢如幻的液晶 6. 人體分泌的唾液、汗液、眼淚 7. 提神醒腦的茶、咖啡 8. 清潔殺菌的肥皂、洗衣液、洗髮水、洗手液 9. 對抗高溫的氟氯烴、全氟化合物 、丁烷 10. 永不褪色的墨水、油墨 11. 呼雲喚雨的積雨雲、霧 12. 緩慢流動的地幔、冰川、熔岩 13. 可持續性的焦

油 我曾在機場安檢處有過一次遭遇,花生醬、蜂蜜、香蒜醬、牙膏,一股腦都被沒收了,最讓我心疼的是,還有一瓶單一麥芽威士卡。在當時的處境下,我無可奈何,只能說著“我要見你們領導”或是“花生醬不算液體”之類的話,儘管我心裡明白,它就是液體。花生醬可以流動,呈現出外包裝的形狀,這是液體的特性,所以花生醬是一種液體。然而,這件事還是讓我憤憤不平。因為即便是在充斥著“智能”技術的機場安檢處,工作人員也依舊不能區分液體麵包醬和液體炸藥。 從2006年起,機場不允許乘客攜帶超過100毫升的液體通過安檢,但我們的檢測技術在那之後並沒有取得明顯進步。X射線檢測儀可以透視你的行李箱,因此被用於

提醒安檢人員注意那些形狀可疑的物體,比如,從吹風機中識別手槍,或是從鋼筆中發現刀具。可是液體沒有固定的形狀,檢測儀只能辨識各類液體包裝物的形狀。 機場掃描技術可以檢測出液體的黏度以及一系列試劑的化學元素,但也遇到了一些麻煩。比如,易爆品硝化甘油的分子構成和花生醬的很相似,它們都含有碳、氫、氮、氧等元素,儘管前者是一種液體炸藥,後者只是一種美食。毒素、毒藥、漂白劑和病原體的種類多得嚇人,要想從更多“無辜”的液體中迅速而又準確地分辨出它們來,簡直比登天還難。不僅如此,我還從很多安檢員(包括他們的領導)那裡聽來了一個觀點:不管是我的花生醬,還是那些我似乎常會忘記從行李箱中取出來的液體物品,從某種意

義上說都是隱患。他們總是說服我去相信這個很勉強的說法。 對於性能穩定的固態物體來說,液態就是它的“第二自我”。固體材料是我們人類忠實的夥伴,衣物、鞋子、手機、汽車以及機場都擁有著固定的形態。可液體不過是流體罷了,它們可以呈現出任何形狀,除非被裝在容器中。當它們沒有被盛放的時候,總是四處漫開、滲透、侵蝕、滴落,擺脫我們的控制。當你將一塊固體物放好後,它就待在那裡不動了,除非有人強行把它搬走。一般情況下,它可以勝任很多有價值的工作,比如,支撐一座大樓,或者為一整個社區提供電力。   然而,液體可謂是無法無天,破壞物品時得心應手。舉個例子吧,在浴室,水流總是容易漏入縫隙,蓄積在地板下面幹壞事,腐蝕

並破壞木質的地板托梁,要想阻止這一切,就要打一場持久戰了。在光滑的瓷磚地面上,積水成了讓人滑倒的“絕佳”隱患,無數人因此受傷。當水在浴室的角落蓄積時,又成了藏汙納垢之所,黑漆漆、黏乎乎的真菌和細菌生長出來,隨時都有可能侵入我們身體並致病。   然而,撇開所有這些威脅不提,我們還是很鍾愛這玩意兒的。我們喜歡在水中泡澡,或是在水下沖涼,讓全身都濕透。更何況,一間浴室裡如果沒有各式各樣瓶裝的沐浴露、洗髮露、護髮素、洗面乳以及管裝的牙膏,它又怎麼稱得上是完整的呢?因為這些神奇的液體,我們感到快樂,卻又對它們充滿擔憂:它們對我們有害嗎?它們是否致癌?它們會破壞環境嗎?因為液體,歡欣與猜忌交織在了一起。它

們天生就是兩面派,既不是氣體也不是固體,而是居於兩者之間,是一類令人難以捉摸的神秘物質。 水銀,數千年來人類為之欣喜不已,卻也深受它的毒害。當我還是個孩子的時候,經常把玩液態的水銀,圍著桌面輕輕彈打水銀球,著迷於它的與眾不同,直到我知道了它有毒。不過,在很多古老的文明中,人們都認為水銀可以益壽延年、癒合骨折,維持身體的健康狀態。如今,我們已不清楚為何它會被賦予這些特性,也許是源於它的特殊性:唯一一種在室溫條件下保持液態的純金屬。中國的第一位皇帝秦始皇,為了長生不老而服用含有汞元素的丹藥,可他在49歲就駕崩了,或許是因為中毒。古希臘人將水銀製成軟膏來使用,而煉金術士們相信,水銀與硫黃的組合是形

成所有金屬的基礎,當水銀和硫黃之間的配比達到完美平衡時,便可以得到黃金。迷信由此產生了,人們以為,不同的金屬只要以恰當的配比混合就能制出黃金。儘管我們現在知道,這完全是天方夜譚,但是黃金可以在水銀中溶解是千真萬確的。如果在這種液體“吸收”了黃金後再將其加熱,它便會揮發,留下固態的金塊。對於很多古代人來說,這個過程就像變魔術。 水銀並不是唯一一種能吞噬其他物質並納入其中的液體。將食鹽加入水中,食鹽會很快消失。但食鹽肯定還存在於某處,可究竟是在哪兒呢?但若是把水換成油,食鹽就會紋絲不動,這是為什麼呢?液態的水銀可以吸收固態的黃金,但它對水十分排斥,這又是為什麼呢?水可以吸收包括氧氣在內的一些氣體

,如果不是這樣,我們就將生活在一個完全不同的世界上。正因為氧氣會在水中溶解,魚類才能在水中呼吸。雖說水不能攜帶足夠的氧氣來供人類呼吸,一些其他的液體卻可以。比如,全氟碳液體(全氟化合物),這是一種化學反應性與導電性都極低的物質。如果你將手機丟入盛有全氟化合物液體的燒杯中,這種液體的惰性會讓手機正常運轉。全氟化合物液體也可以吸收氧氣,濃度高到足以供人類呼吸。呼吸液體由此代替了呼吸空氣。這種可供呼吸的液體具有很多可能性用途,最重要的是用於治療患有呼吸窘迫綜合征的早產嬰兒。 當然,液態水具有維持生命的終極特徵。這是因為它不僅可以溶解氧氣,還含有很多其他的化學物質,包括一些碳基分子,因此能為生命的出

現、新生物的誕生提供必要的水環境。或者,至少在理論上說是這樣。所以,科學家們在其他行星上探測生命時,會先去尋找液態水。不過,宇宙中的液態水十分罕見,木星的衛星木衛二的冰蓋下倒是有可能存在液態水海洋。此外,土星的衛星土衛二上也可能存在液態水。但不管怎麼說,地球是太陽系中唯一一顆在表面上就存在大量液態水並且可直接使用的天體。 一系列特殊的環境條件,使地球表面的氣溫與氣壓有可能維持液態水存在。特別是,如果沒有地球中心那由熔融金屬形成的液態地核,便不會形成讓我們免遭太陽風襲擊的磁場,地表的水很可能早在數十億年前就消散殆盡了。總而言之,在我們的地球上,液體產生了液體,又孕育出了生命。 然而,液體也具

有破壞性。泡沫之所以觸感柔軟,是因為它很容易被壓縮。如果你跳上一條泡沫墊,會感到它在你的腳下收縮。液體不僅不會這樣,還會流動——一個分子移動到另一個分子所釋放的空穴中。你可以在河流中看到此景,或是當你打開水龍頭的時候、當你用小匙攪動咖啡的時候。當你從跳板上跳下,身體栽入水中時,水就會從你的身邊向外流開。然而,水的流動需要時間,如果你沖進去的速度比水流的速度還快,它便會對你施加反向的推力。當你以腹部入水的姿勢跳進泳池時,皮膚上的刺痛感便是源於這股推力。因此,從很高的位置落水與落在水泥地面上沒什麼兩樣。水的不可壓縮性也解釋了為什麼浪濤具有致命的威力,以及它為什麼能在海嘯中摧毀建築物和城市,像卷起一

根浮木般卷起一輛汽車。2004年,印度洋發生地震並引發一系列海嘯,造成周邊14個國家23萬人遇難,在有記錄以來的最嚴重自然災害榜上位居第八位。 液體還有個危險的特徵:爆炸性。在牛津大學攻讀博士學位的時候,我需要準備一些小樣品用來測試電子顯微鏡,其中的步驟包括將一種叫作“電解拋光液”的液體冷凍至-20℃,而這種液體是乙二醇單丁醚、乙酸和高氯酸的混合物。實驗室裡的學長安迪•戈弗雷為我演示了操作方法,我覺得自己已經掌握了。然而,幾個月後,安迪注意到我在進行電解拋光的時候,經常會任由溶液的溫度上升。有一天,他從我身後瞥見這一幕,大吃一驚:“我可不會這麼做!”我問他原因,他指了指關於危險化學品的實驗室

操作守則: 高氯酸是一種腐蝕性強酸,對人體組織有破壞性,如果吸入、吞入高氯酸,或是將其濺到皮膚、眼睛等處,都會有損健康。一旦加熱到室溫,或是在濃度達到72%以上(任何溫度)時使用,高氯酸都會變成一種強氧化性酸。有機物如果與高氯酸混合或接觸,特別容易受其影響而自燃。在通風系統的管道中,高氯酸蒸汽有可能形成對衝擊力敏感的高氯酸鹽。 換句話說,它可以爆炸。 在調查過實驗室後,我發現了很多相似的無色透明液體,大多數都無法和其他物質區分開來。比如,我們使用了氫氟酸,這玩意兒不僅是一種能鑽透水泥、金屬與鮮肉的酸,還是一種會干擾神經系統功能的接觸性毒劑。這是一個潛在的風險,當這種酸腐蝕你身體的時候,你

卻察覺不到。意外地暴露於氫氟酸環境中,很容易被人忽視,它卻能透過你的皮膚一直向體內滲入。 還有乙醇(也就是酒精),它也被列入了有毒物質的名單中。或許只是高劑量使用乙醇時才有毒,但被它殺死的人遠遠多於被氫氟酸殺死的人。在全球各地的社會與文化中,乙醇還扮演著各種各樣的角色,它在歷史上一直被作為殺菌劑、止咳藥、解毒藥、鎮靜劑和燃料使用。乙醇的獨特魅力在於,它是一種精神藥物,可以抑制神經系統。很多人要是每天不喝上一杯酒,就什麼事都做不了,而大部分社交活動也是在提供酒精的場所裡進行的。我們也許不會信任這種液體(這是對的),但不管怎麼說,我們還是愛它。 當乙醇被血液吸收的時候,我們便可以感受到它引發的

生理作用。每一次強有力的心跳都在提醒著我們,身體中的血液扮演著多麼重要的角色,以及它需要不斷地循環。我們要對心臟這台“泵”說上一句“謝謝”,當它停下來的時候,我們也就死了。在世界上所有的液體中,血液毫無疑問是最重要的液體之一。幸運的是,如今心臟也可以被替換、搭橋,或是在我們身體的裡裡外外被研究。血液本身也可以被輸入或輸出,進行儲存、共用、冷凍或復活。事實上,如果沒有血液庫,每年都將有數百萬人死于手術、戰傷或交通事故。 然而,血液也會被一些傳染病源感染,如HIV病毒或肝炎病毒,所以它在保護人體健康的同時也能帶來傷害。由此看來,我們還得考慮到血液的兩面性,所有液體都是如此。對於某種特定的液體來說

,它是否可以被信任,是好是壞,是健康的還是有毒的,是可口的還是讓人噁心的,這些都不太重要。真正重要的是,我們是否對它足夠瞭解,是否能夠駕馭它。 要想揭示我們從管控液體中獲得的力量與快感,最好的方法莫過於乘坐航班時瞥一眼那些被禁止攜帶的液體。這也是本書要講的,在一趟跨越大西洋航班上,提到了各種奇怪而又迷人的液體。我還能乘坐這趟航班,多虧當年讀博的時候沒把自己炸上天,反而繼續從事了材料學的研究,最終成為倫敦大學學院材料研究所的主任,而我的科研工作也包括探尋液體如何“偽裝”成固體。比如,修路時用的焦油、瀝青和花生、黃油都是液體,而人們往往以為它們是固體。因為這項研究,我們受邀飛往全球各地參加會議,

而這本書的內容就是這一趟從倫敦飛往三藩市的旅行報告。 這趟航班是用分子、心跳和海浪的語言來講述的。我的目的是揭開液體的神秘面紗,並解釋我們為何會變得如此依賴液體。飛機帶著我們飛過冰島的火山、格陵蘭島廣闊的冰凍地帶、哈德遜灣附近星羅棋佈的湖泊,最終向南飛到太平洋的海岸。這是一張足夠大的畫布,我們可以探討海洋、雲中的水滴等不同尺寸的液體,還可以通過機上娛樂系統看看有趣的液晶,觀察乘務員送來的飲料,當然,還有讓飛機在平流層一直飛行的航空煤油。 在這本書的每一章裡,我都介紹了一種液體的特性,也多虧了液體本身具有這麼多特性,如可燃性、溶解性,以及可釀造性。我也將告訴你,液體的芯吸效應、液滴形成過程、

黏度、溶解度、壓力、表面張力以及其他不常見的特性是如何讓我們繞著地球飛行的。與此同時,我還將揭示,水為什麼會向樹梢流動,卻又順著山坡下泄,油為什麼是黏乎乎的,波浪如何湧向遠方,物品為什麼會乾燥,液體怎麼變成晶體,自己釀酒的時候如何避免酒精中毒,當然,還有如何泡出一杯好茶。所以,請跟著我一起飛,我向你保證,這將是一趟奇異而又非凡的旅程!

探討柴油風化過程中其化學指紋圖譜與生物指標特徵因子受揮發作用所造成之影響

為了解決柴油揮發的問題,作者陳淑珍 這樣論述:

本研究旨在探討柴油其化學指紋及生物特徵因子受揮發作用之影響,藉此了解風化柴油的特徵因子比值,以作為柴油洩漏事件上的來源鑑識與判別之參考。研究使用台灣兩大柴油生產公司(中油公司與台塑公司)的產品,以純油相柴油或受柴油污染之土壤分別進行揮發實驗。純油相的揮發風化實驗結果顯示,由於油相的風化速度極為緩慢,在經過4個月的揮發與100小時的迴旋揮發的風化反應後,其總碳氫化合物(TPHs)所受的揮發作用影響有相似的降解模式,僅碳數低者較易受到影響,而C13以後之碳數幾乎不受影響,且在n-C17/Pr和n-C18/Ph與pristane/phytane (Pr/Ph)特徵因子比值亦呈現良好線性關係。另一方

面,柴油污染土壤實驗結果顯示,經過3個月的風化後,開放系統之兩家市售柴油成分中Pr/Ph比值範圍介於0.13-0.20,並且柴油中直鏈烷損失較為明顯(影響至C16),因而影響到類異戊二烯(isoprenoids) 含量比,因此在柴油污染土壤實驗條件下,風化條件主要為揮發作用所主導,而風化程度僅屬於輕度風化。此外,本研究亦利用雙環類倍半萜烷(bicyclic sesquiterpanes)比值鑑識其柴油揮發結果,實驗結果發現,雖然中油公司或台塑公司市售柴油具有來源特性差異,但當風化作用影響至C16正烷烴時,不論是中油或台塑公司的柴油其雙環類倍半萜烷比值則無法適用。最後在分析Naphthalene

s (萘系列化合物)、Fluorene (芴系列化合物)以及Phenanthrenes (菲系列化合物)之指紋圖譜,將特徵因子進行一致性評估後,結果顯示當風化作用尚未影響C11以前,其Naphthalenes、 Fluorene與Phenanthrenes之特徵因子比值均適用,但若影響至C16,則Naphthalenes與部分Fluorene系列化合物(輕質部分)則無法適用。整體而言,中油公司與台塑公司市售柴油受風化程度影響差異不大,可能為相同環境所承受之風化作用亦相同,而其中有部分的差異應為油品特性所導致。即便如此,從本研究的結果亦可得知,當油品受風化作用時,環狀脂肪烴(Cyclic Ali

phatic Hydrocarbons) 和芳香烴(Aromatic Hydrocarbons)的抗風化能力明顯大於正烷烴,當風化作用影響至C16正烷烴時,則雙環類倍半萜烷與多環芳香烴中的萘系列將無法提供特徵因子比值,因此在漏油污染鑑識/評估時,如果能先確認其風化作用影響程度,則可提高判識的準確性。