機車排氣檢驗時間的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

國立中興大學 機械工程學系所 盧昭暉所指導 林煜旻的 以簡易車體動力計進行機車污染定期檢測的探討 (2018),提出機車排氣檢驗時間關鍵因素是什麼,來自於機車、空氣污染、引擎動力計、底盤動力計、行車型態。

而第二篇論文國立陽明大學 環境與職業衛生研究所 紀凱獻所指導 楊欣瑜的 臺灣不同空品區大氣細懸浮微粒有害空氣污染物來源解析及暴露風險評估 (2018),提出因為有 細懸浮微粒、多環芳香烴化合物、排放係數、污染來源解析、過量致癌風險的重點而找出了 機車排氣檢驗時間的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了機車排氣檢驗時間,大家也想知道這些:

機車排氣檢驗時間進入發燒排行的影片

改裝沒有錯,錯的是用眼睛測噪音的警察,和不顧他人感受的車主!

#科技執法 #噪音 #我看你的排氣管很吵

0:31 管制原則
1:02 檢驗方法&標準
1:41 行為事實噪音認定
2:24 判定與舉發流程
3:16 科技輔助釐清噪音源頭
3:47 排外案例
4:15 行政訴願
4:50 測定條件
5:27 設備驗證
6:40 總結
8:08 正式施行時間
8:36 Q&A

採訪文章:https://forum.jorsindo.com/thread-2555387-1-1.html

小老婆IG訂閱訂起來了啦!
https://www.instagram.com/jorsindo/
要看詳細的各項報導請看《小老婆汽機車資訊網》
https://forum.jorsindo.com/
https://www.facebook.com/jorsindo.motor.club/?fref=ts
↑這個是小老婆肥書粉絲專頁(很刷存在感!喜歡被刷就訂起來)

以簡易車體動力計進行機車污染定期檢測的探討

為了解決機車排氣檢驗時間的問題,作者林煜旻 這樣論述:

現行台灣機車的定檢制度為無負載惰轉檢驗,在此制度下常遭到有心人士的調校使得機車通過定檢。如果使用新車檢驗方法不僅需要龐大的架設成本,其路徑UDC(城市駕駛模式)更是長達800秒,因此我們必須先從惰轉與定油門檢測方法,探討現今定檢的成效,再進一步開發出不需要高成本的簡易型行車型態檢驗。本研究實地收集各大機車與引擎進行研究,首先對於大學校園周遭蒐集79輛機車進行惰轉檢測,使用廢氣分析儀查看使用中機車的惰轉污染排放濃度是否符合法規,進而分析現行定檢效益是否可以有效找出高污染車輛。其中有63輛機車在排氣管上設有孔洞,可以用於分析觸媒工作效率,判斷觸媒是否有效轉換污染物並且得知平均觸媒轉換效率。檢測結

果,發現道路上行駛中的車輛仍有不通過定檢標準,且部分車輛的排氣管觸媒轉換效率低,分析後得知觸媒效率低的不一定無法通過定檢,但無法通過定檢的轉換效率一定低。除了惰轉以外我們建立一套定油門檢測系統,將路上常見的光陽Many 50引擎架設在引擎動力計上,檢測常用的油門開度,分別是20 %與30 %,並將引擎缸頭溫度控制在攝氏100度,量測引擎性能與污染排放濃度,探討不同油門開度對引擎污染物的影響。除了量測不同油門開度外,還測量排氣管中三元觸媒轉化器對污染轉換的成果。五期機車後所標配的含氧感知器對於機車閉迴路控制污染有相當大的成效,因此我們也建立有無含氧感知器對於機車污染的影響。最後綜合以上判定現行的

機車定檢方式對於車輛真實污染的控制無效。 判定現行惰轉檢測形態無用後,清潔動力與綠色能源實驗室建構一套簡易動力計,並且在動力計上創建簡易行車型態用以快速、有效、低成本找出高污染的車輛並量測車輛真實污染量。在底盤動力計上架設流量計、溫度計及廢氣分析儀量測機車每秒污染排放量,透過積分算出污染排放係數,並且從離散指標看出檢測重現性,已顯示其可行性。並將污染排放係數分級成高、中、低污染排放指標。除此之外分析惰轉與此行車型態之相關性,進一步確立惰轉與行車型態之間有相當大的差異。在此行車型態中我們也建立新舊排氣管對於行車型態污染排放係數的影響。 有了簡易底盤動力計的系統,我們採集台中市區學生的常見路線

:路徑一(國立中興大學至台中火車站)、路徑二(國立中興大學至台中高鐵站)以做為真實行車型態。首先分析真實行車路徑中的污染濃度遠遠高出於惰轉值,甚至高出於現定的惰轉定檢標準數倍,以此用以判斷惰轉定檢成效。接著透過分析車輛時速與引擎轉速對於污染物產生情況,以了解在加速情況會造成污染物急遽上升。最後檢視真實行車路徑與法規行車路徑特性,了解在惰轉-等速-加速-減速不同的比例,最後分析因不同特性所造成的污染排放係數不同。結果顯示目前官方使用的標準行車型態UDC並無法表現台灣的污染排放量。

臺灣不同空品區大氣細懸浮微粒有害空氣污染物來源解析及暴露風險評估

為了解決機車排氣檢驗時間的問題,作者楊欣瑜 這樣論述:

國內外研究陸續發現大氣中細懸浮微粒(PM2.5)會造成人體呼吸及心血管循環系統方面之負面健康危害,尤其以附著於表面之水溶性陰陽離子及多環芳香烴化合物(PAHs)等化學物質,可長時間滯留於環境中並進行遠距離傳輸,而歐盟食品安全局(EFSA)及美國加州空氣資源委員會(CARB)共列管27種PAHs同源物,且部分PAHs被IARC及美國環保署(USEPA)認定為具致癌性及致突變性。近年臺灣空氣品質惡化,以燃煤電廠、鋼鐵冶煉業、車輛廢氣排放為主要貢獻來源,故本研究針對臺灣北部、中部、東部空品區以及隧道大氣,探討排放源鄰近地區之大氣細懸浮微粒中水溶性離子及多環芳香烴之組成特性及濃度變異,估算機動車輛之

污染物排放係數,並應用主成分因子法(PCA)、特徵比值(DR)及正矩陣因子法(PMF)進行來源解析研究,再進一步針對污染源鄰近地區之居民進行呼吸性暴露風險之評估。研究結果顯示,各測站之大氣PM2.5濃度介於1.75~46.1 μg/m3,以隧道及工業測站濃度高於都市及郊區測站,最高濃度發生於隧道T Outlet測站,最低濃度為背景測站,除了隧道T Outlet測站之外,其他測站皆符合國內PM2.5濃度之日平均管制標準值(35 μg/m3),且採樣期間多為低風速,不利污染物擴散而使濃度升高。水溶性陰陽離子以nss-SO42-、NH4+及NO3-之濃度較高,除了I6、R2及背景測站外,各測站大氣硫

氧化比值(S.O.R.)皆高於0.25,顯示有高比例之SO42-為二次生成或自較遠地區傳輸所致,而氮氧化比值(N.O.R.)於各測站皆低於0.1,表示以當地污染源排放為主要貢獻源。大氣PM2.5中PAHs濃度於工業及隧道測站明顯高於都市及郊區測站,最高濃度發生於隧道T Outlet測站,最低濃度為背景測站,物種分布以高環數PAHs為主,工業測站其中及高環數PAHs所占總比例較高,與固定污染源排放特性有關,而都市、郊區與隧道測站其物種分布相似,其低環數物種分布較工業測站來得高,推估都市及郊區測站受移動源影響較為明顯,而毒性當量BaPeq濃度同樣以工業區及隧道測站明顯高於都市區測站,最高濃度發生於

中部I4工業測站,而最低濃度為背景測站,並以DBalP及BcFE為主要優勢物種,由於此兩物種之毒性當量係數分別為30及20倍高之緣故,顯示工業及隧道測站有高污染源排放現象,且其毒性當量濃度之致癌潛勢亦高於都市測站,尤其以中、高環數PAHs較為相關。隧道機動車輛之PM2.5及PAHs排放係數(EFs)為平日高於假日,車型種類為柴油車之排放係數明顯高於汽油車,而毒性當量BaPeq EFs皆為平日高於假日,柴油車高於汽油車,與柴油引擎車輛之污染物排放量及引擎運轉型態等因素有關。大氣PAHs污染來源解析以PCA交叉比對結果顯示,各測站皆與化石燃料燃燒有關,又以工業測站受工業污染影響較為顯著,都市及郊區

測站受固定污染源及移動污染源影響;特徵比值多元污染源鑑別結果顯示,大氣測站以固定污染源及移動污染源之化石燃料燃燒活動為主要貢獻源;PMF模式結果共解析出四個污染貢獻來源,分別為交通源排放(尤其以汽油引擎較為相關)(21.8%,r = 0.50)、南部汽電共生電廠(16.8%,r = 0.89)、北部燃煤電廠(24.9%,r = 0.84)、中部燃煤電廠(36.6%,r = 0.84)及北部燃煤電廠(9.01%,r = 0.98)。本研究再針對臺灣北部、中部、東部空品區及隧道大氣進行大氣污染物之吸入性暴露過量致癌風險(ECR)評估,結果顯示污染源鄰近地區之ECR相對較高,東部空品區最低,且污染源

鄰近地區及中部空品區之平均ECR超過可接受之致癌風險規範標準值(10-6~10-4)。