石墨烯 包 膜的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

石墨烯 包 膜的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦伊廷鋒,謝穎寫的 鋰離子電池電極材料 和臺灣區絲織工業同業公會,財團法人紡織產業綜合研究所的 新纖維新紡織品新趨勢都 可以從中找到所需的評價。

這兩本書分別來自崧燁文化 和台灣區絲織工業同業公會所出版 。

明志科技大學 化學工程系碩士班 楊純誠、施正元所指導 林冠吟的 添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料 (2021),提出石墨烯 包 膜關鍵因素是什麼,來自於磷酸鋰鐵、溶膠凝膠法、多孔氧化石墨烯、氣相生長碳纖維、鋰離子擴散係數、電子導電度、原位X-ray繞射光譜儀、原位顯微拉曼光譜儀。

而第二篇論文國立清華大學 生物資訊與結構生物研究所 余慈顏、蘇士哲所指導 劉君浩的 膜脂質成分對HIV-1 Vpr蛋白與膜之間交互作用的影響 (2021),提出因為有 人類免疫缺乏病毒1、後天免疫缺乏症候群、病毒蛋白R、膜、脂質成分、石墨烯場效電晶體、核磁共振、鈣黃綠素釋出、電壓依賴性陰離子選擇性通道、膽固醇、旋轉回聲雙共振、膜蛋白的重點而找出了 石墨烯 包 膜的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了石墨烯 包 膜,大家也想知道這些:

鋰離子電池電極材料

為了解決石墨烯 包 膜的問題,作者伊廷鋒,謝穎 這樣論述:

  鋰離子電池因其具有比能量大、自放電小、重量輕和環境友善等優點而成為行動式電子產品的理想電源,也是電動汽車和混合電動汽車的首選電源。因此,鋰離子電池及其相關材料已成為世界各國科研人員的研究熱門議題之一。   鋰離子電池主要由正極材料、負極材料、電解液和電池隔膜四部分組成,其性能主要取决於所用電池內部材料的結構和性能。而電極材料决定着電池的性能,同時也决定電池50%以上的成本。   本書結合作者多年來電化學及化學電源科研與教學經驗,介紹了各類電極材料以及電極的制備方法與結構,着重介紹了高性能鋰離子電池正極的設計與功能調控,包括了:層狀電極材料、尖晶石電極、磷酸鹽正極材料

、矽酸鹽正極材料、碳負極材料、鈦基電極材料以及鈦酸鋰電極材料等多種電極材料的設計與性能。適宜從事電池電極設計與製造的科研及技術人員參考。

石墨烯 包 膜進入發燒排行的影片

許多香港人也有膝蓋關節痛的問題,即使年紀輕輕,膝蓋偶爾也會喀喀聲響,或是有膝蓋勞損的狀況,因此這次家電實試的主角便是兩款膝蓋按摩器,分別是售價千餘元、韓國品牌MEDINESS的膝蓋按摩器及二千多元日本品牌Phiten的膝部氣墊按摩器Pro,它們的樣子和功能也很相似,立即開箱實試。

首先兩款膝蓋氣墊按摩器的設計也是包裹着膝關節,讓用家於曲腳的情況下戴上,而且以氣墊按壓和震動的方式模擬人手按摩的效果,並且有熱紅外線的設計,於按摩的時候溫熱膝蓋,促進血液循環,同樣可以無線使用,Phiten更是以Type-C充電。除了氣墊按壓、震動及熱紅外線,較昂貴的Phiten更有EMS微電流設計及石墨烯發熱膜,有兩片低頻電流貼讓用家黏貼在大腿或小腿使用。

https://hk.appledaily.com/lifestyle/20210527/L7HTQPGDLNAIXOQYCCLH6LJMDQ/

影片:
【我是南丫島人】23歲仔獲cafe免費借位擺一人咖啡檔 $6,000租住350呎村屋:愛這裏互助關係 (果籽 Apple Daily) (https://youtu.be/XSugNPyaXFQ)
【香港蠔 足本版】流浮山白蠔收成要等三年半 天然生曬肥美金蠔日產僅50斤 即撈即食中環名人坊蜜餞金蠔 西貢六福酥炸生蠔 (果籽 Apple Daily) (https://youtu.be/Fw653R1aQ6s)
【這夜給惡人基一封信】大佬茅躉華日夜思念 回憶從8歲開始:兄弟有今生沒來世 (壹週刊 Next) (https://youtu.be/t06qjQbRIpY)
【太子餃子店】新移民唔怕蝕底自薦包餃子 粗重功夫一腳踢 老闆刮目相看邀開店:呢個女人唔係女人(飲食男女 Apple Daily) https://youtu.be/7CUTg7LXQ4M)
【娛樂人物】情願市民留家唔好出街聚餐 鄧一君兩麵舖執笠蝕200萬 (蘋果日報 Apple Daily) (https://youtu.be/e3agbTOdfoY)

果籽 :http://as.appledaily.com
籽想旅行:http://travelseed.hk
健康蘋台: http://applehealth.com.hk
動物蘋台: http://applepetform.com

#膝蓋 #氣墊 #按摩器 #石墨 #日本
#果籽 #StayHome #WithMe #跟我一樣 #宅在家

添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料

為了解決石墨烯 包 膜的問題,作者林冠吟 這樣論述:

目錄明志科技大學碩士學位論文口試委員審定書 i誌謝 ii摘要 iiiAbstract v目錄 viii圖目錄 xi表目錄 xvii第一章 緒論 11.1 前言 11.2 研究動機 2第二章 文獻回顧 42.1 鋰離子二次電池之發展 42.1.1鋰離子二次電池反應機制及熱失控 52.2 陰極材料(Cathode materials) 82.3 陽極材料(Anode) 102.4 隔離膜(Separator) 122.5 電解質(Electrolyte) 142.6 磷酸鋰鐵(LiFePO4)的基本特性 162.7 磷酸鋰鐵陰極材料改質方法 182.7.

1 碳層包覆 182.7.2 添加導電/包覆導電的碳材 212.7.3 縮小粒徑 242.8 磷酸鋰鐵材料之合成方法 262.8.1 微波法(Microwave method) 262.8.2 溶膠凝膠法(Sol-gel method) 282.8.3 水熱法(Hydrothermal method) 312.8.4 噴霧乾燥法(Spray-drying method) 35第三章 實驗方法 393.1 實驗藥品與儀器 393.1.1 實驗儀器與設備 403.2 LFP/C複合陰極材料之製備方法 413.2.1磷酸鋰鐵/碳(LFP/C)製備方法 413.2.2磷酸鋰鐵

/碳/多孔氧化石墨烯(LFP/C/PGO)製備方法 423.2.3磷酸鋰鐵/碳/氣相生長碳纖維(LFP/C/VGCF)製備方法 443.3 LFP/C之陰極複合材料之物性、化性分析 463.3.1磷酸鋰鐵/碳(LFP/C)陰極材料之物化性分析方法 473.3.2磷酸鋰鐵/碳(LFP/C)陰極材料之化學成份分析 563.4 磷酸鋰鐵/碳(LFP/C)陰極材料之電化學性質分析 573.4.1電極片製備 573.4.2鈕扣型鋰離子半電池封裝 593.4.3電池充/放電穩定度測試 603.4.4循環伏安法測試 613.4.5交流阻抗測試 623.4.6恆電流間歇滴定法測試 64

第四章 結果與討論 654.1 磷酸鋰鐵/碳(LFP/C)之材料晶相結構分析 654.1.1原位-晶相結構分析 674.2 磷酸鋰鐵/碳(LiFePO4/C)之表面形態分析 724.2.1 磷酸鋰鐵/碳(LFP/C)之材料化學組成元素分析 764.2.2 磷酸鋰鐵/碳(LFP/C)之顯微結構微分析 794.3 磷酸鋰鐵/碳(LFP/C)之碳層結構分析 844.3.1原位-顯微拉曼光譜分析 864.4 磷酸鋰鐵/碳(LFP/C)之比表面積分析(BET) 884.5磷酸鋰鐵/碳(LFP/C)之粉末電子導電度分析 914.6 磷酸鋰鐵/碳(LFP/C)之殘碳量分析 924.7

磷酸鋰鐵/碳(LFP/C)電化學分析法 934.7.1 磷酸鋰鐵/碳(LFP/C)之低電流速率之充放電分析 934.7.2 磷酸鋰鐵/碳(LFP/C)之高電流速率之充放電分析 994.7.3 磷酸鋰鐵/碳(LFP/C)之長期循換穩定性分析 1044.8 磷酸鋰鐵/碳(LFP /C)循環伏安分析 1184.8.1磷酸鋰鐵/碳(LFP/C)電化學微分曲線分析 1204.9 磷酸鋰鐵/碳(LFP/C)交流阻抗及鋰離子擴散係數分析 1244.9.1磷酸鋰鐵/碳(LFP/C)恆電流間歇滴定法測試 129第五章 結論 135參考文獻 137 圖目錄圖 1、鋰離子二次電池充放電原理示意圖

[12]。 5圖 2、1992年至2020年鋰離子電池的世界市場價值[15]。 6圖 3、鋰離子二次電池熱失控三個階段示意圖[19]。 7圖 4、陰極材料中主要分為三種不同的晶體結構[28]。 9圖 5、鋰離子電池之陽極材料分類圖。 10圖 6、鋰離子電池之陽極材料特性。 11圖 7、各種製造隔離膜的方法示意圖[39]。 12圖 8、磷酸鋰鐵(LiFePO4)與磷酸鐵(FePO4)晶格結構圖[53]。 17圖 9、LiFePO4和LiFePO4/C複合材料的SEM圖。 18圖 10、LiFePO4和LiFePO4/C複合材料的SEM圖。 19圖 11、未塗覆TWEEN 80

的LiFePO4 (a). SEM圖 (b). TEM和HRTEM圖;塗覆了TWEEN 80的LiFePO4 (c). TEM和 (d). HRTEM圖。 20圖 12、LFP–CNT–G組合的網絡結構示意圖[58]。 21圖 13、SEM圖 (a). 原始LFP (b). LFP-CNT複合材料 (c). LFP-G複合材料 (d). LFP-CNT-G複合材料;TEM圖 (e). 原始LFP (f). LFP–CNT複合材料 (g). LFP–G複合材料 (h). LFP–CNT–G複合材料。 22圖 14、(a) VC/LFP及C/LFP的放電曲線圖、(b) VC/LFP及C/LF

P循環比較圖。 22圖 15、VC/LFP和C/LFP的EIS阻抗曲線比較圖。 23圖 16、$VGCF的製造過程示意圖[60]。 23圖 17、LFP/C和LFP/C-Tween分析(a). XRD圖譜,(b). 粒徑分佈,(c).和(d). SEM圖,(e)和(f). TEM圖。 25圖 18、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10C不同電流速率下的充電/放電曲線。 27圖 19、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10 C的各種電流速率下的充電/放電循環性能圖。 27

圖 20、SEM圖(a). HY-LiFePO4 (b). HY-SO-LiFePO4。 29圖 21、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG樣品的SEM和TEM圖。 30圖 22、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG複合材料在不同速率下的充電/放電曲線和循環性能。 30圖 23、LiFePO4/C核-殼複合材料(a). XRD圖, (b). SEM圖, (c). TEM圖, (d). HRTEM圖。 32圖 24、SEM圖(a). 3DG, (b). FP, (c)、(d). FP/3DG, (e). LFP/C,

(f). LFP/3DG /C。 33圖 25、LFP/C和LFP/3DG/C,(a). 0.2C、(b). 1C時的循環性能曲線和庫侖效率。 34圖 26、LFPO/rGO複合材料(a)~(c). SEM圖像,(d)~(f). TEM圖像。 34圖 27、SEM圖(a). Hy-LFP/C (b). Hy-LFP/GO/C (c). SP-LFP/GO/C和(d). SP-LFP/PGO/C。 36圖 28、(a). Hy-LFP/C, (b). SP-LFP/GO/C, (c). SP-LFP/PGO/C複合材料在0.2~10C時的充放電曲線, (d). LFP複合材料的速率能力曲

線圖。 36圖 29、具有不同NC層含量的LiFePO4的SEM圖(a).0 wt. %NC (b).2 wt. %NC (c).5 wt. %NC (d).10 wt. %NC。 37圖 30、HRTEM圖(a).LFP/C, (b).LFP/C/CNT, (c).LFP/C/G, (d).LFP/C/G/CNT。 38圖 31、LiFePO4/C陰極材料之流程示意圖。 45圖 32、LiFePO4/C陰極複合材料的各性質檢測項目之流程圖。 46圖 33、布拉格表面衍射示意圖。 47圖 34、X-ray繞射分析儀(Bruker D2 Phaser)。 48圖 35、原位繞射分析

光譜儀組件。 49圖 36、掃描式電子顯微鏡(Hitachi S-2600H)圖。 50圖 37、高解析穿透式電子顯微鏡(JEOL JEM2100)。 51圖 38、顯微拉曼光譜儀(Confocal micro-Renishaw)。 52圖 39、原位顯為拉曼分析光譜儀組件。 53圖 40、比表面積分析儀。 54圖 41、將錠片夾入自製夾具之示意圖。 55圖 42、元素分析儀(Thermo Flash 2000)。 56圖 43、LiFePO4/C複合陰極材料電極片製備之流程圖。 58圖 44、CR2032鈕扣型半電池封裝示意圖。 59圖 45、佳優(BAT-750B)電池

測試儀。 60圖 46、恆電位電池測試儀(MetrohmAutolab PGST AT302N)圖。 61圖 47、AC交流阻抗測試圖譜(Nyquist plot)示意圖。 62圖 48、BioLogic BCS-805電池測試儀。 64圖 49、添加不同導電碳材之陰極複合材料XRD分析圖譜。 66圖 50、(a) LFP/C、(b) LFP/C/VGCF電極在充放電1次循環下的In-situ XRD分析圖。 69圖 51、LFP/C電極在不同範圍之In-situ XRD分析圖。 70圖 52、LFP/C/VGCF電極在不同範圍之In-situ XRD分析圖。 70圖 53、在

In-situ XRD充放電過程中LFP相的比例圖。 71圖 54、PGO之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 55、VGCF之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 56、LFP/C之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 57、LFP/C/PGO之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 58、LFP/C/VGCF之SEM表面形貌圖: (a)

.、(b). 在5kx、(c).、(d). 在10kx。 75圖 59、LFP/C樣品EDS元素mapping分析圖。 76圖 60、LFP/C樣品EDS元素分析光譜圖。 76圖 61、LFP/C/PGO樣品EDS元素mapping分析圖。 77圖 62、LFP/C/PGO樣品EDS元素分析光譜圖。 77圖 63、LFP/C/VGCF樣品EDS元素mapping分析圖。 78圖 64、LFP/C/VGCF樣品EDS元素分析光譜圖。 78圖 65、自製PGO添加劑在HR-TEM之分析圖。 80圖 66、市售VGCF添加劑在HR-TEM之分析圖。 80圖 67、LFP/C粉體在H

R-TEM之分析圖。 81圖 68、LFP/C/PGO粉體在HR-TEM之分析圖。 82圖 69、LFP/C/VGCF粉體在HR-TEM之分析圖。 83圖 70、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果圖。 85圖 71、LFP/C在不同範圍之In-situ micro-Raman分析圖。 87圖 72、LFP/C/VGCF在不同範圍之In-situ micro-Raman分析圖。 87圖 73、LFP/C材料之BET比表面積分析圖。 89圖 74、LFP/C/PGO材料之BET比表面積分析圖。 89圖 75、LFP/C/VGCF材料之BET比表面積分析圖。 9

0圖 76、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量曲線圖。 94圖 77、LFP/C在0.1C/0.1C充放電速率活化階段電性曲線圖。 95圖 78、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性曲線圖。 96圖 79、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段階段電性曲線圖。 97圖 80、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化曲線圖。 98圖 81、LFP/C在0.2C/0.2C-10C充放電速率電性曲線圖。 100圖 82、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性曲線圖

。 101圖 83、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性曲線圖。 102圖 84、添加不同導電碳材在0.2C/0.2-10C速率電性曲線圖。 103圖 85、LFP/C在0.1C/0.1C充放電速率30 cycles電性曲線圖。 106圖 86、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性曲線圖。 107圖 87、LFP/C/VGCF在0.1C/0.1C充放電速率30 cycles電性曲線圖。 108圖 88、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性曲線圖。 109圖 89、LFP/C在1

C/1C充放電速率100 cycles之電性曲線圖。 110圖 90、LFP/C/PGO在1C/1C充放電速率100 cycles之電性曲線圖。 111圖 91、LFP/C/VGCF在1C/1C充放電速率下100 cycles之電性曲線圖。 112圖 92、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性曲線圖。 113圖 93、LFP/C在1C/10C充放電速率下100 cycles之電性曲線圖。 114圖 94、LFP/C/PGO在1C/10C充放電速率下100 cycles之電性曲線圖。 115圖 95、LFP/C/VGCF在1C/10C充放電速率下

100 cycles之電性曲線圖。 116圖 96、添加不同導電碳材在1C/10C充放電速率100 cycles之電性曲線圖。 117圖 97、LFP/C添加不同導電碳材之CV分析圖。 119圖 98、LFP/C樣品之電化學微分曲線分析。 121圖 99、LFP/C/VGCF樣品之電化學微分曲線分析。 122圖 100、LFP/C樣品添加不同導電碳材之電化學微分曲線分析。 123圖 101、等效電路圖模組圖[112]。 125圖 102、在0.1C/0.1C充放5次循環後,不同導電碳材製備LFP/C樣品:(a). EIS阻抗比較圖、(b).鋰離子擴散係數比較圖。 126圖 10

3、在0.1C/0.1C充放30次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 127圖 104、在1C/1C充放100次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 128圖 105、LFP/C單次步驟充放電曲線圖(a) charge;(b) discharge。 132圖 106、LFP/C之V vs.τ1/2分析圖。 132圖 107、LFP/C之GITT充放電曲線圖。 133圖 108、LFP/C/VGCF之GITT充放電曲線圖。 133圖 109、GITT單次步驟比

較(a) charge、(b) discharge。 134圖 110、GITT之充電分析圖。 134 表目錄表 1、鋰離子電池之陰極材料的特性比較分析表 9表 2、鋰離子電池常用有機溶劑之特性比較 15表 3、LiFePO4與FePO4之晶格參數 17表 4、實驗藥品 39表 5、實驗儀器與設備 40表 6、充放電條件計算表 60表 7、方程式中符號及單位 63表 8、添加不同導電碳材之陰極複合材料XRD晶相比較表 66表 9、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果 85表 10、LFP/C、LFP/C/PGO、LFP/C/VGCF之比表面積分析結果

88表 11、LFP/C、LFP/C/PGO、LFP/C/VGCF之粉體電子導電度結果分析 91表 12、添加不同導電碳材之陰極複合材料之殘碳含量分析 92表 13、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量比較 94表 14、LFP/C在0.1C/0.1C充放電速率活化階段電性比較 95表 15、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性比較 96表 16、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段電性比較 97表 17、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化比較 98表 18、LFP/C在

0.2C/0.2C-10C充放電速率電性比較 100表 19、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性比較 101表 20、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性比較 102表 21、添加不同導電碳材在0.2C/0.2-10C速率電性比較表 103表 22、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性比較表 107表 23、LFP/C/VGCF在0.1C/0.1C充放電速率下30 cycles電性比較表 108表 24、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性比較表 10

9表 25、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性比較表 113表 26、添加不同導電碳材在1C/10C充放電速率100 cycles之電性比較表 117表 27、LFP/C添加不同導電碳材之CV分析結果 119表 28、LFP/C樣品之電化學微分曲線分析表 121表 29、LFP/C/VGCF樣品之電化學微分曲線分析表 122表 30、LFP/C樣品添加不同導電碳材之電化學微分曲線分析 123表 31、在0.1C/0.1C充放5次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 126表 32、在0.1C/0.

1C充放30次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 127表 33、在1C/1C充放100次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 128表 34、鋰離子的擴散係數方程式中符號及單位 130

新纖維新紡織品新趨勢

為了解決石墨烯 包 膜的問題,作者臺灣區絲織工業同業公會,財團法人紡織產業綜合研究所 這樣論述:

  為協助業者開發新纖維、紗線及機能性布料等新紡織品,了解紡織產業發展趨勢,本會特與紡織產業綜合研究所共同編製《新纖維 新紡織品 新趨勢》一書,內容簡介如目錄。介紹報導新纖維43篇,新紡織品33篇,染整及防護、機能加工新趨勢29篇,紡織終製品(成衣服飾)發展趨勢29篇,紡織設備及製程智慧化趨勢16篇,本書內容豐富,含彩色圖片逾180張,全書約16.5萬字,對紡織業上中下游相關廠商投入開發新纖維、紗線及機能性布料等新紡織品,助益頗大。

膜脂質成分對HIV-1 Vpr蛋白與膜之間交互作用的影響

為了解決石墨烯 包 膜的問題,作者劉君浩 這樣論述:

Vpr蛋白在人類免疫缺乏病毒1的生命週期中扮演多重角色,例如,Vpr能夠協助預嵌入複合體(pre-integration complex)穿過核膜進入細胞核、反式激活長末端重複(long-terminal repeat)所調節的基因、誘發細胞凋亡以及引發細胞週期停滯於G2期,而這些角色使病毒對細胞的毒性及影響加劇。另外,研究指出Vpr能夠和膜脂質作用,例如,Vpr能在膜上形成陽離子選擇通道、促使膜的通透性增加,並且能有效的將DNA從膜外送入細胞。然而,我們並不清楚Vpr與膜作用的機制為何,以及此作用會受到哪些因素的影響。在過去,為了大量生產Vpr以研究其結構及特性,藉由大腸桿菌表達重組蛋白的

方式,因受到細菌停滯效應的影響,產量並不理想。因此在之前的蛋白質結構研究中,主要藉由化學合成的方式製造蛋白質,並因受限其溶解度,結構是在極端的有機溶劑中鑑定。在此研究中,我們設計了一個利用大腸桿菌表現His-tagged GB1-fused Vpr蛋白的新穎載體,顯著地提升了蛋白質的產量。藉由細菌在攝氏18度、自訂的培養基(defined growth medium)中所產出高達每升10毫克的蛋白質產量,使後續對Vpr的生物化學及生物物理性質的系統性鑑定更加容易。為了更深入了解Vpr與膜之間的作用,我們分析了Vpr在許多不同類膜構造中的整體二級結構,包括在脂疊(bicelle)、微脂體(lip

osome) 以及利用十二烷基膽鹼(dodecylphosphorylcholine)界面活性劑來形成的微胞(micelle)。另外,在鈣黃綠素釋出實驗與共組裝奈米圓盤實驗中,我們發現Vpr與膜之間的交互作用在含有1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)(DOPG)脂質的情況勝於只含有1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)脂質。為了量化Vpr和膜之間的結合強度,我們更進一步的利用石墨烯場效電晶體(graphene based field effect transistor)生物感

測器,測得Vpr和含有DOPG的膜之間的解離常數為9.6 ± 2.1 μM。而Vpr與只有DOPC的膜之間的作用,無法量測到顯著的變化,證明Vpr與DOPC之間的作用相對微弱。在過去,Vpr促使細胞凋亡的現象被認為是來自於Vpr和電壓依賴性陰離子選擇性通道(voltage-dependent anion channel)之間的交互作用,為了更加了解他們的作用強度,我們利用上述生物感測器來定量。當人類電壓依賴性陰離子選擇性通道1(hVDAC-1)置於只含有DOPC脂質的膜時,我們量測到Vpr和hVDAC-1之間的解離常數為5.1 ± 0.9 μM,為其他鑑定提供了參考依據。在細胞膜中膽固醇是脂筏

的主要成分,在HIV-1的生命週期,特別是病毒組裝及出芽的過程中,扮演重要的角色。因此,我們希望進一步探討膽固醇對Vpr和膜之間的影響。首先,在鈣黃綠素釋放實驗中,發現膜的通透性會隨著膽固醇濃度增加而減少。另外,我們還使用了固態核磁共振來得知Vpr在蛋白微脂體(proteoliposome)中局部區域的化學環境。在交叉極化(cross polarization)魔術角旋轉(magic angle spinning)核磁共振的訊號中,我們發現碳13呈現出較寬的化學位移分布,表示Vpr在蛋白微脂體中感受到多樣的化學環境。在碳{磷}的旋轉回聲雙共振(rotational-echo double-re

sonance)實驗中,我們發現兩種不同退相特徵(dephasing feature)的共振訊號,分別對應於Vpr上的半胱胺酸跟脂質上的磷酸基之間不同的距離。儘管我們並沒有足夠證據顯示膽固醇會直接作用於Vpr,或是改變其結構,但是膽固醇的存在確實改變了Vpr在不同化學環境的分布,這顯示出Vpr跟膜之間的作用確實會受到膽固醇的調控。此篇研究顯示,對於Vpr和膜之間的作用,膜脂質的成分是一個重要的影響因素。我們相信,藉由更深入的了解Vpr的功能以及所扮演的角色,有助於對後天免疫缺乏症候群提供新的治療方法。