開wifi定位的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

開wifi定位的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦趙英傑寫的 超圖解 ESP32 深度實作 和徐智明的 開家書店,順便賺錢都 可以從中找到所需的評價。

這兩本書分別來自旗標 和中信出版社所出版 。

國立臺灣科技大學 電子工程系 呂政修所指導 鄭和軒的 融合WiFi訊號強度與人體姿態估計進行兩階段定位系統 (2021),提出開wifi定位關鍵因素是什麼,來自於機器學習、姿態估計、位置感知、室內導航、WiFi 位置估計。

而第二篇論文國立嘉義大學 電機工程學系 陳志忠所指導 林靖哲的 使用區間二型模糊系統改善基於訊號強度指標之室內定位 (2021),提出因為有 區間二型模糊系統、粒子群演算法、室內定位技術、訊號強度指標的重點而找出了 開wifi定位的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了開wifi定位,大家也想知道這些:

超圖解 ESP32 深度實作

為了解決開wifi定位的問題,作者趙英傑 這樣論述:

  本書是《超圖解 Arduino 互動設計入門》系列作品, 專為想要深度運用 ESP32 的讀者所撰寫, 從基本的 GPIO、內建的磁力感測器、電容觸控開關、物聯網 IoT 運用、低功率藍牙、低耗電睡眠模式、底層 FreeRTOS 作業系統等等, 都透過作者精心設計的實驗, 以及本系列作品最具特色的超圖解方式說明, 包含以下主題:   內建電容觸控開關與霍爾效應磁力感測器   硬體 / 計時器中斷處理與記憶體配置   OLED 顯示器中英文顯示以及圖形顯示   QR code 製作與顯示   Wi-Fi 無線網路物聯網 IoT 應用   HTTP GET/POST 與網

路 API 使用   動態資料圖表網頁   WebSocket 網路即時資料傳輸   RTC 即時時鐘與 GPS 精準對時   ESP32 睡眠模式與定時喚醒、觸碰喚醒   SPIFFS 檔案系統與 SD 記憶卡的使用   網路音樂 / podcast 串流播放、文字轉語音播放   mDNS 區域網域名稱   BLE 低功耗藍牙應用   BLE 藍牙鍵盤、滑鼠人機介面輸入裝置製作   藍牙立體聲播放器   經典藍牙序列埠通訊 (SPP)   藍牙裝置電量顯示   HTTPS 加密網路連線與網站建置   Web Bluetooth 網頁藍牙傳輸   Mesh 網路實作   FreeRTOS 作業

系統   FreeRTOS 任務排程   看門狗 (watchdog)   FreeRTOS 訊息佇列   FreeRTOS 二元旗號 (semaphore) 與互斥旗號 (mutex)   OTA 無線韌體更新   物件導向程式設計與自製程式庫   Backtrace 除錯訊息解析   電壓偵測與電流偵測   在學習的過程中, 也帶著讀者動手做出許多有趣實用的實驗, 包括:   煙霧濃度偵測   磁石開關   人體移動警報器   即時天氣顯示器   網頁式遙控調光器   網頁動態圖表   休眠省電定時上傳感測資料   網路收音機   氣溫語音播報機   藍牙立體聲音播放器   藍牙多媒體

旋鈕控制器   藍牙多媒體鍵盤   電腦桌面自動切換器   投籃遊戲機   網頁式藍牙遙控車 本書特色   ESP32 是一系列高效能雙核心、低功耗、整合 Wi-Fi 與藍牙的 32 位元微控器, 適合物聯網、可穿戴設備與行動裝置應用。ESP32 的功能強大, 涉及的程式以及應用場域相關背景知識也較為廣泛, 本書的目的是把晦澀的技術內容, 用簡單可活用的形式傳達給讀者。   ESP32 支援多種程式語言, 本書採用最受電子 Maker 熟知的 Arduino 語言。但因為處理器架構不同, 所以某些程式指令, 像是控制伺服馬達以及發出音調的 PWM 輸出指令, 操作語法和典型的 Ardui

no (泛指在 Arduino 官方的開發板, 如:Uno 板執行的程式) 不一樣, 這意味著某些 Arduino 範例和程式庫無法直接在 ESP32 上執行。   相對地, ESP32 的獨特硬體架構也需要專門的程式庫和指令才能釋放它的威力, 例如, 低功耗藍牙 (BLE) 無線通訊、可輸出高品質數位音效的 I2S(序列音訊介面)、DAC(數位類比轉換器)、Mesh(網狀) 網路、HTTPS 安全加密連網...等。   更有意思的是, ESP32 開發工具引入了 FreeRTOS 即時作業系統, 可運行多工任務 (同時執行多個程式碼), 而 ESP32 Arduino 程式其實就是運作在

FreeRTOS 上的一個任務。因此, 書中除了含括 Arduino 語言外, 也會適時帶入 ESP32 官方開發工具鏈 ESP-IDF 的功能, 除了可操控底層 FreeRTOS 作業系統外, 也可運用 Arduino 中未提供的 ESP32 專屬功能。   本書假設讀者已閱讀過《超圖解 Arduino 互動設計入門》第三或四版, 所以本書的內容不包含基本電子學 (像電阻分壓電路、電晶體開關電路、運算放大器的電路原理分析..等), 也不教導 Arduino 程式入門 (如:條件判斷、迴圈、陣列、指標..等), 而是以《超圖解 Arduino 互動設計入門》為基礎, 將篇幅依照 ESP32

應用的需要, 在程式設計方面說明物件導向 (OOP)、類別繼承、虛擬函式、回呼函式、指標存取結構、堆疊與遞迴...等進階主題。   另外, 本書也不僅僅只是探討 Arduino 程式, 由於微控器是物聯網應用當中的一個環節, 以『透過網頁瀏覽器控制某個裝置』的應用來說, 呈現在瀏覽器的內容是採用 HTML 和 JavaScript 語言開發的互動網頁, 和微控器的 Arduino 程式語言完全不同, 在相關章節也會對這些主題有所著墨。   開發微電腦應用程式, 偶爾會用到一些小工具程式, 例如, 呈現在 OLED 顯示器上的中英文字體與影像, 都必須先經過『轉檔』才能嵌入 Arduino

程式碼, 除了使用現成的工具軟體, 書中也示範採用廣受歡迎的 Python 語言編寫批次轉換字體和影像檔的工具程式。書中提及的 Python 程式屬於進階應用, 是假設讀者閱讀過《超圖解 Python 程式設計入門》, 具備運用 Python 操作檔案目錄、解析命令行參數、轉換影像、執行緒...等相關概念後的延伸學習, 可讓讀者練習善用各種程式語言綜合實踐的方法。   另外, 為了方便讀者查詢書中內容, 本書特別準備了線上版本的索引, 避免一般中文書缺乏索引的問題, 讓讀者可以快速找到所需的主題。希望這本厚實的作品能夠成為各位實作專案時最佳的工具書。

開wifi定位進入發燒排行的影片

▌合作!斗內!加入會員!
歐富寶斗內:https://goo.gl/3VmAJ1
加入頻道會員:https://goo.gl/FNuJNa
合作企劃來信至:[email protected]
我的Discord連結:https://discord.gg/Uuy2jw6
#虹彩六號教學​ #R6Bosz​ #一步一腳印通往高手之路
────────────────────────────────────────
▌影片片段
0:00 開頭
0:21 定位
1:17 槍械
2:06 技能
4:15 電擊哨vs激光
4:33 應用:視當下情況而定
5:46 應用:BOSZ教戰手冊
7:52 玩法:準備行動階段
10:10 玩法:其他觀念
12:32 總結
────────────────────────────────────────
▌背景音樂資訊 BGM (Background Music) Info.
名稱:Vanze - Forever (feat. Brenton Mattheus) [NCS Release]
網址:https://youtu.be/RX7fZ5I709Y
────────────────────────────────────────
▌電腦配備 Computer Allocation:
處理器 CPU:R9 3900X
主機板 MB:MPG X570 GAMING EDGE WIFI
記憶體 RAM:十銓 DELTA DELTA D4 3200 8G*4
顯示卡 GPU:GeForce GTX 1080 Ti GAMING X TRIO
固態硬碟 SSD:Kingston A2000 NVMe PCIe SSD
內接硬碟 HDD:Seagate 2TB、東芝 TOSHIBA 6TB
電源供應器 PSU:Fractal Design Ion+ 860W Platinum
機殼 CASE:Define 7 Clear Tempered Glass
機殼風扇 CASE Fan:Fractal內建機殼風扇
CPU散熱器 CPU Fan:Celsius+ S36 Dynamic
────────────────────────────────────────
▌周邊設備 Peripheral Equipment
主要螢幕 Main Monitor:Zowie XL2740
次要螢幕 Secondary Monitor:Acer KG271 B
鍵盤 Keyboard:HyperX Alloy Origins Core
滑鼠 Mouse:Logitech G Pro Wireless
滑鼠墊MousePad:Wicked Bunny Cordura Sprint
麥克風 Micphone:Blue Yeti Pro
耳機 Headset:HyperX Cloud Stinger Wireless
────────────────────────────────────────
▌攝影、軟體
螢幕錄製:Nvidia
現實攝影:iPhone XS Max
剪輯軟體:Adobe Premiere Pro
影片縮圖:Adobe illustrator
────────────────────────────────────────
▌遊戲設定
▍滑鼠 DPI:800
▎虹彩六號
│視角
比例:16:9 視角:90
│靈敏度
垂直:7 水平:7
│瞄準靈敏度
1倍鏡:63
1.5倍鏡:106
2倍鏡:109
2.5倍鏡:110
3倍鏡:112
4倍鏡:112
5倍鏡:113
12倍鏡:174

融合WiFi訊號強度與人體姿態估計進行兩階段定位系統

為了解決開wifi定位的問題,作者鄭和軒 這樣論述:

由於近年來人們對於定位的重視,全球定位系統(Global Positioning System, GPS)已被廣泛使用於我們生活中的應用,卻礙於建築物的干擾訊號傳播導致GPS在室內定位並不準確,因此如何在室內達到高精度定位成為人們重視的研究議題,傳統的方法是以訊號強度為基礎如:藍牙、Wi-Fi、ZigBee,通過三邊測量估算裝置位置,然而,基於訊號的定位方法容易因為室內環境的多路徑干擾,導致環境中的訊號分佈變動性大,產生高定位誤差,而近年來深度學習的蓬勃發展使研究人員藉由成熟的影像辨識技術對行人進行位置估計與室內定位,卻無法得到設備資訊以識別人員身份,為此我們提出了一種基於Wi-Fi與影像的

高精度人員室內定位方法。室內定位系統分為兩階段定位,第一階段通過使用智慧型手機收集三台Wi-Fi基地台兩個頻段2.4GHz及5GHz的訊號接受強度,並以機器學習方法進行粗精度定位預測,接著在第二階段分析監視攝影機捕捉的人員畫面,並以姿態估計模型提取影像中行人們的腳點座標,再藉由直接線性轉換與線性回歸模型得到影像人員的位置,最後與第一階段的Wi-Fi定位位置進行匹配,完成可識別人員的室內定位系統。本研究採用的實驗場域具備多遮蔽物及訊號干擾,因此我們收集2.4GHz及5GHz兩個頻段的訊號接受強度,減少2.4GHz的訊號干擾以實現更高的Wi-Fi定位精度,Wi-Fi的平均定位誤差達1.4公尺,並分

析兩個頻段的定位表現。在影像定位方面我們則提出兩種用於影像中的行人腳點提取方法,並以機器學習模型減少因為鏡頭扭曲與直接線性轉換造成的誤差,結果表明我們改善後的腳點提取方法能夠降低50%的定位誤差,也指出通過機器學習模型預測的定位結果比僅以2D線性變換的誤差減少約0.4公尺,達到誤差0.4公尺的高精度室內定位。

開家書店,順便賺錢

為了解決開wifi定位的問題,作者徐智明 這樣論述:

線下書店之於城市和讀者,不僅僅是賣書的地方——它是城市文明的象徵,也是承載人類精神文明家園的領地。隨著互聯網線上零售的發展,線下實體店經受了巨大的衝擊。衝擊之下,書店的生存之道在哪裡?   作為書店管理者,如何才能經營好一家書店,實現贏利與品牌雙豐富?這是管理者真正要思考的。對此,作者以經營的基本要略為基石,深入剖析經營書店所需的書店品牌、戰略、顧客與顧客關係管理、如何服務、社會化媒體傳播、經營哲學等管理內容,以對實體店的管理者進行一場管理與銷售的思維更新,具有現實指導意義。

使用區間二型模糊系統改善基於訊號強度指標之室內定位

為了解決開wifi定位的問題,作者林靖哲 這樣論述:

準確的無線室內定位在物聯網的多樣化應用中發揮著重要作用,而Wi-Fi 設備的普遍使用和 RSSI 值的容易取得,使得基於接收信號強度指標 (RSSI) 的室內定位技術是最早提出和研究的技術之一。然而,由於室內環境中多路徑效應導致 RSSI 值會產生巨大的波動,基於 RSSI 的室內定位方法有時無法產生穩定和令人滿意的定位精度。因此,本文提出使用區間2型模糊系統(IT2FS) 改善基於RSSI的室內定位技術,利用模糊系統可以包容數據的不確定性來進行非線性處理。本文中選擇了兩種基於RSSI的室內定位技術,一個是指紋法,另一個是直接對應法。指紋法是室內定位技術的常用方法,通常會配合K-近鄰演算法(

KNN) 或線性加權K-近鄰演算法(WKNN),通過選定與未知位置的指紋最相近的多個參考點的位置進行線性加權來改善定位。而在本論文中使用 IT2FS 來決定 K-近鄰演算法的權重,一開始指紋法的離線階段時,粒子群演算法(PSO)通過最小化預先收集的參考點的定位誤差來訓練區間2型模糊系統。在線上預測階段時,由最佳化後的 IT2FS 產生的 K-近鄰演算法的權重,來預測未知點的位置;直接對應法是一種直接使用RSSI 來確定位置的方法,IT2FS會作為模型,利用RSSI值估計位置,在這個方法中我們也使用 PSO 來最佳化 IT2FS 的各種參數。最後,我們選擇了兩個不同的環境作為實驗場地,真實環境的

實驗結果證明了本文所提出方法的優越性。