電阻誤差b的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

電阻誤差b的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦位明先寫的 電子儀表量測 - 最新版(第三版) - 附MOSME行動學習一點通:診斷 和簡詔群,呂文生 的 高壓電維修實務工程-測試篇(第二版)都 可以從中找到所需的評價。

另外網站VICTOR 4105A-B接地电阻测试仪使用说明书(光伏字样改为 ...也說明:·. 电阻小于22时增加0.22误差。 ·使用探针依照IEC61557-5 测量电流和电压。 (11). H.

這兩本書分別來自台科大 和全華圖書所出版 。

國立陽明交通大學 電子研究所 張添烜所指導 江宇翔的 應用於物件偵測與關鍵字辨識之強健記憶體內運算設計 (2021),提出電阻誤差b關鍵因素是什麼,來自於記憶體內運算、物件偵測、關鍵字辨識、模型個人化。

而第二篇論文中原大學 電子工程學系 陳淳杰所指導 徐志豪的 一個十位元每秒兩千萬次取樣帶冗餘位逐漸趨近式類比數位轉換器 (2021),提出因為有 逐漸趨近式類比數位轉換器、分段式電容陣列、帶冗餘位演算法的重點而找出了 電阻誤差b的解答。

最後網站電阻電容器原物料耗用通常水準則補充:電阻 、排阻和半固定碳膜電阻等6 種,電容部分:計有電解電容、 ... 色碼B 為其數值的第二位數。 ... 二、如阻值誤差低於1%則為特殊電阻,總損耗率增加0.5 倍.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了電阻誤差b,大家也想知道這些:

電子儀表量測 - 最新版(第三版) - 附MOSME行動學習一點通:診斷

為了解決電阻誤差b的問題,作者位明先 這樣論述:

  本書章節編排循序漸進,由基本物理開始到整體電子電路的量測為止,讓學習者能對電子儀表量測有系統性的了解。並且在介紹各種量測之前,先就所需使用的儀表特性及操作做說明,配合測量的實例說明,能讓學習者有更完整的測量概念。每章後面附有重點重理與學後評量,期望能由教授者帶領,讓學習者藉由思考及討論題目的過程,對每一章節的內容能加以統合延伸。

應用於物件偵測與關鍵字辨識之強健記憶體內運算設計

為了解決電阻誤差b的問題,作者江宇翔 這樣論述:

近年來,由於不同的應用都能夠藉由和深度學習的結合而達到更好的結果,像是物件偵測、自然語言處理以及圖像辨識,深度學習在終端設備上的發展越來越廣泛。為了應付深度學習模型的龐大資料搬移量,記憶體內運算的技術也在近年來蓬勃發展,不同於傳統的范紐曼架構,記憶體內運算使用類比域的計算使儲存設備也同樣具備運算的能力。儘管記憶體內運算具有降低資料搬移量的優點,比起純數位的設計,在類比域進行計算容易受到非理想效應的影響,包括元件本身或是周邊電路的誤差,這會造成模型災難性的失敗。此篇論文在兩種不同的應用領域針對記憶體內運算進行強健的模型設計及硬體實現。在電阻式記憶體內運算的物件偵測應用當中,我們將重點放在改善模

型對於非理想效應的容忍度。首先,為了降低元件誤差的影響,我們將原本的二值化權重網路改變為三值化權重網路以提高電阻式記憶體中高阻態元件的數量,同時能夠直接使用正權重及負權重位元線上的電流值進行比較而不使用參考位元線作為基準。其次,為了避免使用高精度的正規化偏差值以及所導致的大量低阻態元件佈署,我們選擇將網路中的批次正規化層移除。最後,我們將運算從分次的電流累加運算改為一次性的運算,這能夠將電路中非線性的影響降到最低同時避免使用類比域的累加器。相較於之前的模型會受到這些非理想效應的嚴重影響導致模型無法運作,我們在考慮完整的元件特性誤差,周邊電路誤差以及硬體限制之下,於IVS 3cls中做測試,能夠

將平均精確度下降控制在7.06\%,在重新訓練模型後能更進一步將平均精確度下降的值降低到3.85\%。在靜態隨機存取記憶體內運算的關鍵字辨識應用當中,雖然非理想效應的影響相對較小,但是仍然需要針對周邊電路的誤差進行偏壓佈署補償,在經過補償及微調訓練後,在Google Speech Command Dataset上能夠將準確率下降控制在1.07\%。另外,由於語音訊號會因為不同使用者的資料而有大量的差異,我們提出了在終端設備上進行模型的個人化訓練以提高模型在小部分使用者的準確率,在終端設備的模型訓練需要考量到硬體精度的問題,我們針對這些問題進行誤差縮放和小梯度累積以達到和理想的模型訓練相當的結果

。在後佈局模擬的結果中,這個設計在推論方面相較於現有的成果能夠有更高的能源效率,達到68TOPS/W,同時也因為模型個人化的功能而有更廣泛的應用。

高壓電維修實務工程-測試篇(第二版)

為了解決電阻誤差b的問題,作者簡詔群,呂文生  這樣論述:

  筆者以二十多年電氣工程實務經驗,以精簡文字加上理論與實物之對照,闡述高壓電實務工程。本書分維修篇及測試篇兩冊,維修篇為輸配電概略,設備檢驗規章、規範表及各種保護電驛等。測試篇為斷路器、儀錶、礙子、變壓器原理與應用、高壓電各式測試及事故故障排除詳述等等。從事高壓電工程除了要暸解整個系統外,最主要是要能謹慎與冷靜、安全措施一定要做得好;本書對於緊急事故之處理皆有詳細之敘述,故本書極適合工業界、電機保養技術人員學習與參考之用。   本書特色     1.筆者以二十多年電氣工程實務經驗,以精簡文字加上理論與實物之對照,闡述高壓電實務工程。   2.本書內容為斷路器、儀表、礙子、變壓器原理與應用

、高壓電各式測試及事故故障排除詳述等等。   3.本書對於緊急事故之處理皆有詳細之敘述。   4.本書適用於業界相關人士及有興趣之讀者使用。 

一個十位元每秒兩千萬次取樣帶冗餘位逐漸趨近式類比數位轉換器

為了解決電阻誤差b的問題,作者徐志豪 這樣論述:

如今電子產品除了要效能好,亦追求低功耗與輕薄短小,由於半導體製程技術的進步,帶動了積體電路設計的成長,許多低功耗的晶片得以實現,在眾多類比數位轉換器中,逐漸趨近式(Successive-Approximation)由於大部分元件皆由數位邏輯電路所構成,且整個電路僅需一組比較器即可,大幅地降低了資料轉換所需的功耗。本論文完整製作一個10-bit 20MS/s SAR ADC,架構採用分段式電容陣列數位類比轉換器,使用TSMC 0.18um 1P6M CMOS製程,電源供應1.8V,輸入頻率為1.97265625MHz進行模擬,訊號雜訊與失真比(SNDR) 60.71 dB,有效位元數(ENOB

) 9.79-bit,功耗0.92 mW,品質因數(FOM) 52f J/conversion-step,核心晶片佈局面積0.31*0.21〖mm〗^2,晶片總佈局面積1.163*1.169〖mm〗^2。最後設計規格同樣為10-bit 20MS/s SAR ADC,架構改成帶冗餘位演算法,將MSB電容拆解並分配至原電容陣列中,達到電容切換速度的提升,並在栓鎖電路前加上一級前置放大器,用以降低誤差,提高比較器的精準度。使用相同製程與輸入頻率進行模擬,訊號雜訊與失真比(SNDR) 61.93 dB,有效位元數(ENOB) 9.99-bit,功耗3.024mW,品質因數(FOM) 148.7f J/

conversion-step。關鍵字:逐漸趨近式類比數位轉換器;分段式電容陣列;帶冗餘位演算法