高功率光纖 雷 射的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

另外網站光纖雷射的全球市場報告2023年也說明:... 光纖雷射; 紫外線光纖雷射; 超高速光纖雷射; 全球光纖雷射市場,各應用領域市場區隔,實際成果與預測,2017-2022,2022-2027F,2032F; 標註; 細微加工; 高功率 ...

國立高雄科技大學 電子工程系 李財福、趙珮如所指導 蔡宜興的 運用遠心鏡頭與線性馬達定位平台改善影像與雷射虛擬同軸穩定性—以去除方形扁平無引腳封裝溢膠為例 (2021),提出高功率光纖 雷 射關鍵因素是什麼,來自於封裝溢膠、虛擬同軸、雷射除膠。

而第二篇論文國立雲林科技大學 機械工程系 張世穎所指導 劉科宏的 高功率半導體陶瓷基板與鋁合金接合研究 (2021),提出因為有 陶瓷基板、Sn基合金、Zn基合金、超音波接合、陶瓷紋理化的重點而找出了 高功率光纖 雷 射的解答。

最後網站領創激光LEAD Laser 6000瓦只要398萬- 財經新聞則補充:萬瓦級超高功率光纖雷射設備,這三年在大陸市場應用帶領下,不僅需求直線攀升,大陸領創激光LEAD Laser台灣總代理勝錩實業,近幾年在「四個小時到廠 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了高功率光纖 雷 射,大家也想知道這些:

運用遠心鏡頭與線性馬達定位平台改善影像與雷射虛擬同軸穩定性—以去除方形扁平無引腳封裝溢膠為例

為了解決高功率光纖 雷 射的問題,作者蔡宜興 這樣論述:

目的:本研究結合影像辨識、光纖雷射、遠心鏡頭與線性馬達定位平台建構虛擬同軸來達到影像定位溢膠後可直接傳遞位置至光纖雷射系統進行除膠流程。並藉由二代自動雷射除膠機(ADMFM II)與第三代自動雷射除膠實驗機(ADMFM III)的差異進行研究,取得優化虛擬同軸的關鍵因素,藉以改善半導體封裝製程良率。材料與方法:本研究實驗設備採用ADMFM II (宜樺科技有限公司,中華民國)與ADMFM III,QFN 4B 10 • 10為實驗材料。設備組件選用流程如下:一、進行目標尺寸範圍選定。二、影像取得選用1200萬畫素電荷耦合元件 (CCD)搭配遠心鏡頭(0.09X)與外同軸光源(100 •100

mm)。三、雷射採用光纖雷射(20W)搭配德製振鏡與聚焦鏡頭(ADMFM II:Fθ鏡頭;ADMFM III:遠心鏡頭)進行除膠。四、運動控制採用NI-7390運動控制卡搭配十字線性馬達定位平台。五、軟體之主流程控制為 NI LabVIEWTM (version 2013; National Instruments Corporation, TX, USA) ,影像處理為NI VisionTM (version 2013; National Instruments Corporation, TX, USA)與NI IMAQTM (version 2013; National Instrume

nts Corporation, TX, USA),雷射控制軟體為MarkingMate及其 OCX函式庫(版本2.7a;興誠科技股份有限公司,中華民國)。虛擬同軸建構方法如下:一、採用傳統手法各自校正影像、雷射系統與線馬平台。二、借助線馬平台的高再現性(0.001mm)將影像、雷射建構虛擬同軸。三、雷射進行33•33定位點雷雕。四、影像分析各點偏移量並轉換座標系統與單位。五、回饋偏移量至雷射系統。六、重複步驟三至步驟五確認校正結果,直到最大偏移量達到0.01mm以下。實驗方法:設備校正完成,進行實驗取得ADMFM II與ADMFM III 各600筆偏移量原始數據,並進行資料統計分析。結果:

根據實驗結果本研究所採用的的虛擬同軸可降低雷射除膠之偏移量50%,角落最大平均偏移量由II_Cn.μ_24=0.0468 mm降至III_Cn.μ_3=0.0227 mm,中心最大平均偏移量由II_Ct.μ_25=0.0437 mm降至III_Ct.μ_5=0.0235 mm。結論:本研究的結果表明,採用影像遠心鏡頭可有效降低對於邊緣影像扭曲的影響,而雷射遠心鏡頭亦可針對在對邊緣除膠降低Z軸變化導致的XY平面位移的偏移量。而本研究的虛擬同軸整合影像、雷射與線馬平台系統,對系統自動校正速度亦有明顯助益。

高功率半導體陶瓷基板與鋁合金接合研究

為了解決高功率光纖 雷 射的問題,作者劉科宏 這樣論述:

電子產品小型化、多功能的發展趨勢,使得電子封裝可靠性要求越來越高,如高溫、潮濕和腐蝕的環境。傳統封裝使用的塑料基板由於塑料基板化學和熱穩定較差在高功率電子元件應用上出現了限制。陶瓷材料具有比塑膠材料較佳的氣密性,以及非常好的熱傳導性,這些優點使得陶瓷在高功率與可靠度要求很高的構裝市場上受到重視。研究使用兩種活性銲料合金,其一為Sn基銲料合金與另一Zn基銲料合金,對Al2O3陶瓷/鋁合金和低溫燒結陶瓷/鋁合金於大氣環境下進行接合,並對陶瓷表面雷射加工用以提高接合強度,所有接合試驗均進行剪力強度試驗與破斷面分析。Sn基銲料合金熔點約227℃,接合時銲料與鋁合金反應形成Ag2Al介金屬。在有紋理化

陶瓷的接合界面,因超音波輔助使鋁溶進銲道,且滲入陶瓷溝槽中,在溝槽內分析到Ag2Al的成分。在超音波輔助接合作用下,於Al2O3陶瓷表面雷射紋理化可使平均剪力強度從11.73提升到18.74MPa,接合剪力強度提升約59.76%。Zn基銲料合金熔點約394℃,接合加熱過程銲料與鋁合金於界面形成擴散反應層,於Al2O3陶瓷表面雷射紋理化可使平均剪力強度從7.37提升到9.18MPa,在超音波輔助接合下銲料合金滲入陶瓷溝槽,且銀元素聚集於陶瓷界面,因錨固作用可提升接合強度約24.56%。