齒輪油黏度指數的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

齒輪油黏度指數的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦吳曉鈴寫的 現代機械設計手冊:單行本潤滑和密封設計(第二版) 和成大先(主編)的 機械設計手冊(第六版)(第4卷)都 可以從中找到所需的評價。

另外網站Klüber Lubrication 風力發電機專用潤滑劑也說明:業條件較嚴苛,風電增速機齒輪油應通過micro-pitting測試,且為 ... 對策:較高黏度、較低摩擦力的齒輪油及特殊添加劑有助於抑制 micro-pitting ... 酸化(TAN指數上升).

這兩本書分別來自化學工業 和化學工業所出版 。

國立高雄科技大學 機械工程系 許兆民所指導 龔啟良的 機車傳動零件尺寸設計及熱處理參數最佳化 (2018),提出齒輪油黏度指數關鍵因素是什麼,來自於有限元素法、田口法、熱處理變形、高週波淬火、滲碳防止。

而第二篇論文國立虎尾科技大學 車輛工程系碩士班 翁豊在所指導 蔡東烜的 汽車引擎潤滑油性能測試 (2015),提出因為有 機油、黏度、磨耗的重點而找出了 齒輪油黏度指數的解答。

最後網站齒輪油主要指變速器和後橋的潤滑油。它和機油在使用條件則補充:(3)更多使用多級油:為了滿足低溫換擋、高溫有黏膜保護和燃油的經濟性要求,使用了含剪下安定性良好黏度指數改進劑的多級油,如75W、75W/90、75W/80、75W/85黏度級別的油 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了齒輪油黏度指數,大家也想知道這些:

現代機械設計手冊:單行本潤滑和密封設計(第二版)

為了解決齒輪油黏度指數的問題,作者吳曉鈴 這樣論述:

一部順應“中國製造2025”智慧裝備新要求、技術先進、資料可靠的現代化機械設計工具書,從新時代機械設計人員的實際需求出發,追求現代感,兼顧實用性、通用性,準確性,涵蓋了各種常規和通用的機械設計技術資料,貫徹了新的國家及行業標準,推薦了國內外先進、智慧、節能、通用的產品。 第17篇  潤滑 第1章 潤滑基礎 1.1潤滑劑的作用17-3 1.2潤滑狀態及分類17-3 第2章 潤滑劑 2.1潤滑劑及其物理化學性能17-6 2.1.1潤滑劑的分類17-6 2.1.2潤滑劑的物理化學性能及其分析評定方法17-7 2.1.2.1黏度17-7 2.1.2.2黏溫特性17-10 2.1

.2.3潤滑劑的其他性能分析評定17-13 2.2潤滑油添加劑的種類及功能17-14 2.2.1添加劑的分類與代號17-14 2.2.2各種添加劑的功能與作用機理17-16 2.2.2.1清淨分散劑17-16 2.2.2.2抗氧抗腐劑17-19 2.2.2.3極壓抗磨劑與油性劑17-21 2.2.2.4金屬鈍化劑17-25 2.2.2.5黏度指數改進劑17-25 2.2.2.6防銹劑17-26 2.2.2.7降凝劑17-27 2.2.2.8抗泡劑17-28 2.2.2.9乳化劑和抗乳化劑17-29 2.2.2.10其他潤滑油添加劑17-30 2.2.2.11潤滑油複合添加劑17-30 2.3潤

滑劑的類型及應用17-31 2.3.1潤滑油17-31 2.3.1.1車用潤滑油17-31 2.3.1.2工業齒輪油17-58 2.3.1.3液壓油及液力傳動油17-65 2.3.1.4汽輪機油17-84 2.3.1.5壓縮機油17-90 2.3.1.6軸承潤滑油17-97 2.3.1.7鐵路內燃機車用油17-102 2.3.2潤滑脂17-106 2.3.2.1潤滑脂的分類、代號及組成17-106 2.3.2.2潤滑脂的選用17-106 2.3.2.3潤滑脂稠度分類17-119 2.3.3合成潤滑劑17-120 2.3.4固體潤滑劑17-121 2.3.5其他潤滑材料17-123 第3章 軸

承的潤滑 3.1滾動軸承的潤滑17-124 3.1.1潤滑的作用和潤滑劑的選擇17-124 3.1.2潤滑脂潤滑17-124 3.1.2.1潤滑脂的選用17-124 3.1.2.2填脂量和換脂週期17-126 3.1.3潤滑油潤滑17-128 3.1.3.1潤滑油的選擇17-128 3.1.3.2潤滑方式的選擇17-128 3.1.3.3換油週期17-131 3.2滑動軸承的潤滑17-131 3.2.1非完全流體潤滑軸承的潤滑17-131 3.2.2液體靜壓滑動軸承17-133 第4章 齒輪傳動的潤滑 4.1齒輪潤滑基礎17-135 4.1.1齒輪潤滑的特點和作用17-135 4.1.2齒輪

傳動的潤滑狀態17-135 4.2齒輪潤滑油及添加劑17-137 4.2.1齒輪潤滑油的基礎油及添加劑17-138 4.2.1.1齒輪潤滑油的基礎油17-138 4.2.1.2齒輪潤滑油的添加劑17-139 4.2.2齒輪潤滑油的調製17-139 4.2.3齒輪潤滑油的分類17-139 4.2.3.1工業齒輪油的分類17-139 4.2.3.2車輛齒輪油的分類17-144 4.2.4齒輪潤滑油的規格標準(品質指標)17-145 4.3齒輪潤滑油的合理選用方法17-145 4.3.1工業閉式齒輪油的選用方法(包括高速齒輪的潤滑)17-147 4.3.1.1潤滑油種類的選擇17-147 4.3.1

.2潤滑油黏度的選擇17-148 4.3.1.3潤滑方式的選擇17-149 4.3.2開式工業齒輪油(脂)的選用方法17-149 4.3.3蝸輪蝸杆油的選用方法17-149 4.3.3.1蝸輪蝸杆油種類的選擇17-149 4.3.3.2蝸輪蝸杆油黏度的選擇17-150 4.3.3.3蝸杆傳動裝置潤滑方式的選擇17-151 4.3.4車輛齒輪油的選用方法17-151 4.3.4.1車輛齒輪潤滑油種類的選擇17-151 4.3.4.2車輛齒輪油黏度的選擇17-151 4.3.5儀錶齒輪傳動的潤滑17-152 4.4潤滑對齒輪傳動性能的影響17-153 4.4.1潤滑對齒面膠合的影響17-153 4

.4.2潤滑對齒面磨損的影響17-156 4.4.3潤滑對齒面疲勞點蝕的影響17-158 4.4.4潤滑對齒輪振動、雜訊的影響17-160 4.4.5潤滑對齒輪傳動效率的影響17-160 4.4.6潤滑對齒面燒傷和輪齒熱屈服的影響17-161 4.5齒輪傳動裝置的潤滑方式及潤滑系統的設計17-161 4.5.1齒輪傳動裝置的潤滑方式和潤滑裝置17-162 4.5.1.1油浴潤滑17-162 4.5.1.2迴圈噴油潤滑17-162 4.5.1.3油霧潤滑17-164 4.5.1.4離心潤滑17-165 4.5.1.5潤滑脂潤滑17-165 4.5.1.6固體潤滑和自潤滑17-166 4.5.2齒

輪傳動的冷卻17-166 4.5.2.1功率損耗與效率17-166 4.5.2.2自然冷卻17-168 4.5.2.3強制冷卻17-168 4.5.3齒輪潤滑油的過濾淨化17-170 4.6齒輪傳動裝置油液監測17-172 4.6.1油液監測的方法和分析手段17-172 4.6.2油液監測流程圖及取樣要求17-173 4.7齒輪潤滑油的更換17-173 4.7.1齒輪油使用中品質變化原因17-173 4.7.2齒輪油使用中品質變化的表現17-174 4.7.3齒輪潤滑油的換油指標17-177 4.7.4齒輪潤滑油的混用與代用17-179 4.7.4.1齒輪潤滑油的混用17-179 4.7.4.

2齒輪潤滑油的代用17-180 第5章 其他元器件的潤滑 5.1導軌的潤滑17-181 5.1.1導軌油的分類及規格17-181 5.1.2導軌潤滑油的選用17-182 5.1.3機床導軌潤滑方法的選擇17-183 5.1.4機床導軌的維護保養17-183 5.2自動變速器的潤滑17-183 5.2.1自動變速器油的特性17-183 5.2.2自動變速器油的分類和規格17-184 5.3離合器的潤滑17-186 5.4聯軸器的潤滑17-187 5.5機械無級變速器的潤滑17-188 5.5.1機械無級變速器油的分類和規格17-188 5.5.2機械無級變速器油的選用17-189 5.5.3機

械無級變速器油的合理使用17-190 5.6螺旋副的潤滑17-190 5.6.1螺紋連接的潤滑17-190 5.6.2回轉變位及微調用螺旋副的潤滑17-190 5.6.3機床螺旋傳動的潤滑17-191 5.7鋼絲繩的潤滑17-191 5.7.1鋼絲繩潤滑劑的種類及性能17-191 5.7.2鋼絲繩的合理潤滑17-192 5.8鏈傳動的潤滑17-194 5.8.1鏈傳動對潤滑劑的要求和選用17-194 5.8.2鏈條潤滑方法的選擇17-196 5.9活塞環和氣缸的潤滑17-196 5.9.1活塞環的潤滑17-196 5.9.2活塞和氣缸的潤滑17-197 5.10凸輪的潤滑17-198 5.11

彈簧的潤滑17-198 5.12鍵銷的潤滑17-199 第6章 潤滑方法及裝置的選用 6.1潤滑方法及裝置簡介17-200 6.1.1潤滑方法的分類17-200 6.1.2集中潤滑系統的分類17-202 6.1.3潤滑部件及圖形符號17-203 6.1.3.1潤滑元件17-203 6.1.3.2集中潤滑系統的分類與圖形符號17-208 6.2稀油集中潤滑系統17-209 6.2.1稀油集中潤滑系統設計的任務及步驟17-209 6.2.1.1設計任務17-209 6.2.1.2設計步驟17-209 6.2.2稀油集中潤滑系統的主要設備17-213 6.2.2.1潤滑油泵及潤滑油泵裝置17-21

3 6.2.2.2稀油潤滑裝置17-213 6.2.2.3輔助裝置及元件17-233 6.2.2.4潤滑油箱17-248 6.3幹油集中潤滑系統17-252 6.3.1幹油集中潤滑系統的分類和組成17-252 6.3.2幹油集中潤滑系統的設計計算17-256 6.3.2.1潤滑脂消耗量的計算17-256 6.3.2.2潤滑脂泵的選擇計算17-256 6.3.2.3系統工作壓力的確定17-257 6.3.2.4滾動軸承潤滑脂消耗量估算方法17-257 6.3.3幹油集中潤滑系統的主要設備17-260 6.3.3.1潤滑脂泵及裝置17-260 6.3.3.2分配器與噴射閥17-272 6.3.4其

他輔助裝置及元件17-280 6.3.5幹油集中潤滑系統的管路附件17-288 6.3.5.1配管材料17-288 6.3.5.2管路附件17-288 6.4油霧潤滑17-291 6.4.1油霧潤滑工作原理、系統及裝置17-291 6.4.1.1工作原理17-291 6.4.1.2油霧潤滑系統和裝置17-291 6.4.2油霧潤滑系統的設計和計算17-293 6.4.2.1各摩擦副所需的油霧量17-293 6.4.2.2凝縮嘴尺寸的選擇17-294 6.4.2.3管道尺寸的選擇17-294 6.4.2.4空氣和油的消耗量17-294 6.4.2.5發生器的選擇17-295 6.4.2.6潤滑油

的選擇17-295 6.4.2.7凝縮嘴的佈置方法17-295 6.5油氣潤滑17-298 6.5.1油氣潤滑工作原理、系統及裝置17-298 6.5.1.1油氣潤滑裝置17-299 6.5.1.2油氣潤滑裝置17-301 6.5.2油氣混合器及油氣分配器17-303 6.5.2.1QHQ型油氣混合器17-303 6.5.2.2AHQ型雙線油氣混合器17-304 6.5.2.3MHQ型單線油氣混合器17-304 6.5.2.4AJS型、JS型油氣分配器17-305 6.5.3專用油氣潤滑裝置17-306 6.5.3.1油氣噴射潤滑裝置17-306 6.5.3.2鏈條噴射潤滑裝置17-307 6

.5.3.3行車軌道潤滑裝置17-308 6.6微量潤滑17-309 6.6.1微量潤滑工作原理、系統及裝置17-309 6.6.1.1油氣兩相微量潤滑17-309 6.6.1.2油水氣三相微量潤滑17-310 6.6.2微量潤滑裝置元件17-311 6.6.2.1精密氣動泵17-311 6.6.2.2混合閥17-311 6.6.2.3頻率發生器17-312 6.6.3微量潤滑裝置的應用17-312 6.6.4微量潤滑油17-313 第7章 典型設備的潤滑 7.1潤滑系統的換油和沖洗淨化17-314 7.1.1潤滑油的更換週期17-314 7.1.2潤滑系統的沖洗淨化17-317 7.2金屬

切削機床的潤滑17-318 7.2.1機床潤滑的特點17-318 7.2.2機床潤滑劑的選用17-318 7.2.3機床常用潤滑方法17-320 7.3內燃機的潤滑17-320 7.3.1內燃機的工作特點17-320 7.3.2內燃機油的基本性能17-321 7.3.3內燃機油的分類17-322 7.3.4內燃機油的選用17-323 7.4壓縮機的潤滑17-325 7.4.1壓縮機油的選用17-327 7.4.2壓縮機潤滑管理17-327 7.5汽輪機的潤滑17-330 7.5.1汽輪機油的作用17-330 7.5.2汽輪機油的性能17-330 7.5.3汽輪機油的選擇及使用管理17-331

7.6起重運輸機械的潤滑17-332 7.6.1起重運輸機械的潤滑特點17-332 7.6.2起重運輸機械典型零部件的潤滑17-332 7.6.3典型起重運輸機械的潤滑17-333 7.7軋鋼機的潤滑17-335 7.7.1軋鋼機對潤滑的要求17-335 7.7.2軋鋼機潤滑採用的潤滑油、脂17-335 7.7.3軋鋼機常用潤滑系統17-335 7.7.4軋鋼機常用潤滑裝置17-336 7.7.5軋鋼機常用潤滑設備的安裝維修17-337 7.8食品加工機械的潤滑17-339 7.8.1食品加工機械對潤滑的要求17-339 7.8.2食品機械潤滑劑的選用17-339 7.9鍛壓設備的潤滑17-3

42 7.9.1機械壓力機的潤滑17-342 7.9.2螺旋壓力機的潤滑17-342 7.9.3鍛錘的潤滑17-343 7.10礦山設備的潤滑17-344 7.10.1礦山機械對潤滑油的要求17-344 7.10.2礦山機械用油舉例17-344 參考文獻17-346 第18篇  密封 第1章 密封的分類及應用 1.1洩漏方式、密封方法及密封設計要求18-3 1.2靜密封的分類、特點及應用18-4 1.3動密封的分類、特點及應用18-6 第2章 墊片密封 2.1墊片類型、應用及選擇18-11 2.2法蘭密封18-12 2.2.1法蘭密封面形式18-12 2.2.2管道法蘭墊片選擇18-1

3 2.2.3法蘭密封設計18-14 2.2.4高溫法蘭防漏措施18-16 2.3高壓與自緊密封18-16 2.3.1高壓密封的特點及設計原則18-16 2.3.2高壓與自緊密封類型18-17 2.3.3高壓與自緊密封的設計和計算18-20 2.4墊片標準18-22 2.4.1管法蘭用非金屬平墊片尺寸(GB/T 9126—2008)18-22 2.4.2管法蘭用非金屬平墊片技術條件(GB/T 9129—2003)18-29 2.4.3管法蘭連接用金屬環墊技術條件(GB/T 9130—2007)18-31 2.4.4纏繞式墊片分類(GB/T 4622.1—2009)18-33 2.4.5纏繞式墊

片管法蘭用墊片(GB/T 4622.2—2008)18-34 2.4.6纏繞式墊片技術條件(GB/T 4622.3—2007)18-39 2.4.7管法蘭用聚四氟乙烯包覆墊片(GB/T 13404—2008)18-41 2.4.8管法蘭用金屬包覆墊片(GB/T 15601—2013)18-42 2.4.9柔性石墨金屬波齒複合墊片尺寸(GB/T 19066.1—2008)18-44 2.4.10柔性石墨金屬波齒複合墊片技術條件(GB/T 19066.3—2003)18-52 2.4.11鋼制管法蘭用金屬環墊尺寸(GB/T 9128—2003)18-54 第3章 密封膠及膠黏劑 3.1密封膠及膠

黏劑的特點及應用18-57 3.2密封膠的分類及特性18-57 3.3密封膠品種牌號及應用範圍18-58 3.4密封膠選用及應用18-59 3.5膠黏劑使用原則18-60 第4章 填料密封 4.1毛氈密封18-61 4.2軟填料密封18-62 4.2.1基本結構、密封原理及應用18-62 4.2.2軟填料密封的設計和計算18-62 4.2.3軟填料密封材料及選擇18-64 4.2.4軟填料密封的結構設計18-65 4.3硬填料類型18-68 4.3.1活塞環及脹圈密封18-68 4.3.1.1密封結構及應用18-68 4.3.1.2密封設計18-69 4.3.2活塞杆填料密封18-70 4.

3.3往復活塞壓縮機金屬平面填料18-72 4.3.3.1三斜口密封圈(JB/T 9102.1—2013)18-72 4.3.3.2三、六瓣密封圈(JB/T 9102.3—2013)18-74 4.3.3.3徑向切口刮油圈(JB/T 9102.4—2013)18-76 4.3.3.4密封圈和刮油圈用拉伸彈簧(JB/T 9102.5—2013)18-78 4.3.3.5密封圈和刮油圈技術條件(JB/T 9102.6—2013)18-79 第5章 成形填料密封 5.1O形密封圈18-81 5.2V形密封圈18-81 5.3Y形密封圈18-82 5.4鼓形和山形密封圈18-82 5.5J形和L形密

封圈18-83 5.6管道法蘭連接結構中的U形密封圈18-83 5.7密封件及相關標準18-84 5.7.1O形橡膠密封圈18-84 5.7.1.1液壓氣動用O形橡膠密封圈尺寸及公差(GB/T 3452.1—2005)18-84 5.7.1.2液壓氣動用O形橡膠密封圈溝槽尺寸和設計計算準則(GB/T 3452.3—2005)18-88 5.7.1.3O形橡膠密封圈用擋圈18-114 5.7.1.4液壓缸活塞和活塞杆動密封溝槽尺寸和公差(GB/T 2879—2005)18-115 5.7.1.5液壓缸活塞和活塞杆窄斷面動密封溝槽尺寸系列和公差(GB/T 2880—1981)18-120 5.7.

1.6液壓缸活塞用帶支承環密封溝槽形式、尺寸和公差(GB/T 6577—1986)18-125 5.7.1.7液壓缸活塞杆用防塵圈溝槽形式、尺寸和公差(GB/T 6578—2008)18-126 5.7.1.8不銹鋼卡壓式管件組件用O形橡膠密封圈(GB/T 19228.3—2012)18-131 5.7.2VD形橡膠密封圈(JB/T 6994—2007)18-132 5.7.3單向密封橡膠圈(GB/T 10708.1—2000)18-135 5.7.4Yx形密封圈18-144 5.7.4.1孔用Yx形密封圈(JB/ZQ 4264—2006)18-144 5.7.4.2軸用YX形密封圈(JB/Z

Q 4265—2006)18-148 5.7.5雙向密封橡膠密封圈(GB/T 10708.2—2000)18-151 5.7.6往復運動橡膠防塵密封圈(GB/T 10708.3—2000)18-154 5.7.7液壓缸活塞和活塞杆動密封裝置18-157 5.7.7.1同軸密封件尺寸系列和公差 (GB/T 15242.1—2017)18-157 5.7.7.2支承環尺寸系列和公差(GB/T 15242.2—2017)18-162 5.7.7.3同軸密封件安裝溝槽尺寸系列和公差  (GB/T 15242.3—1994)18-173 5.7.7.4支承環安裝溝槽尺寸系列和公差(GB/T 15242.

4—1994)18-174 5.7.8車氏組合密封18-176 5.7.8.1使用範圍18-176 5.7.8.2密封材料18-176 5.7.8.3直角滑環式組合密封18-177 5.7.8.4腳形滑環式組合密封18-178 5.7.8.5齒形滑環式組合密封18-179 5.7.8.6C形滑環式組合密封18-180 5.7.8.7TZF型組合防塵圈18-181 5.7.9氣缸用密封圈(JB/T 6657—1993)18-181 5.7.9.1氣缸活塞密封用QY型密封圈18-181 5.7.9.2氣缸活塞杆密封用QY型密封圈18-183 5.7.9.3氣缸活塞杆用J型防塵圈18-185 5.7

.9.4氣缸用QH型外露骨架橡膠緩衝密封圈18-186 5.7.10密封圈材料18-187 5.7.10.1普通液壓系統用O形橡膠密封圈材料(HG/T 2579—2008)18-187 5.7.10.2耐高溫滑油O形橡膠密封圈材料 (HG/T 2021—1991)18-189 5.7.10.3往復運動密封圈材料(HG/T 2810—2008)18-190 第6章 油封 6.1油封結構形式及特點18-192 6.2油封設計和計算18-192 6.3油封材料及選擇18-194 6.4油封相關標準18-195 6.4.1旋轉軸唇形密封圈橡膠材料(HG/T 2811—1996)18-195 6.4.

2密封元件為彈性體材料的旋轉軸唇形密封圈基本尺寸和公差(GB/T 13871.1—2007)18-196 6.4.3液壓傳動旋轉軸唇形密封圈設計規範(GB/T 9877—2008)18-197 第7章 機械密封 7.1接觸式機械密封的基本構成與工作原理18-205 7.2常用機械密封分類及適用範圍18-205 7.3機械密封的選用18-211 7.4常用機械密封材料18-213 7.4.1摩擦副用材料18-213 7.4.2輔助密封件用材料18-215 7.4.3彈性元件用材料18-216 7.4.4傳動件、緊固件用材料18-217 7.4.5不同工況下機械密封材料選擇18-218 7.5波

紋管式機械密封18-220 7.5.1波紋管式機械密封形式及應用18-220 7.5.2波紋管式機械密封端面比壓計算18-221 7.6機械密封設計及計算18-222 7.7泵用機械密封18-229 7.7.1高溫介質泵用機械密封18-229 7.7.2易汽化介質泵用機械密封18-229 7.7.3含固體顆粒介質泵用機械密封18-231 7.7.4腐蝕性介質泵用機械密封18-232 7.7.5易凝固、易結晶介質泵用機械密封18-232 7.8風機用機械密封18-233 7.9釜用機械密封18-234 7.10機械密封輔助系統18-236 7.10.1泵用機械密封輔助系統的組成和功能18-236

7.10.2泵用機械密封沖洗和冷卻輔助系統18-236 7.10.3泵用機械密封封液雜質過濾、分離器18-240 7.10.4風機用機械密封潤滑和冷卻系統18-241 7.10.5釜用機械密封的潤滑和冷卻系統18-242 7.10.6非接觸式機械密封監控系統18-245 7.11非接觸式機械密封18-245 7.11.1流體靜壓式機械密封18-245 7.11.2流體動壓式機械密封18-246 7.11.3非接觸式氣膜密封18-247 7.11.4非接觸式液膜密封18-251 7.11.5泵用非接觸式機械密封18-252 7.11.6風機用非接觸式機械密封18-253 7.11.7釜用非接觸

式機械密封18-255 7.12機械密封有關標準18-256 7.12.1機械密封的形式、主要尺寸、材料和識別標誌(GB/T 6556—2016)18-256 7.12.2機械密封技術條件(JB/T 4127.1—2013)18-260 7.12.3機械密封用O形橡膠密封圈(JB/T 7757.2—2006)18-262 7.12.4泵用機械密封(JB/T 1472—2011)18-267 7.12.5焊接金屬波紋管機械密封(JB/T 8723—2008)18-275 7.12.6耐酸泵用機械密封(JB/T 7372—2011)18-278 7.12.7耐鹼泵用機械密封(JB/T 7371—2

011)18-282 7.12.8潛水電泵用機械密封(JB/T 5966—2012)18-285 7.12.9液環式氯氣泵用機械密封(HG/T 2100—2003)18-287 7.12.10船用泵軸的機械密封(CB/T 3345—2008)18-289 7.12.11船用泵軸的變壓力機械密封(CB* 3346—1988)18-290 7.12.12機械密封迴圈保護系統(JB/T 6629—2015)18-291 7.12.13釜用機械密封技術條件18-319 7.12.14攪拌傳動裝置機械密封(HG/T 21571—1995)18-321 7.12.15搪玻璃攪拌容器用機械密封(HG/T 2

057—2017)18-325 7.12.16焊接金屬波紋管釜用機械密封技術條件18-329 7.12.17釜用機械密封輔助裝置(HG/T 2122—2003)18-330 7.12.18攪拌傳動裝置機械密封迴圈保護系統(HG/T 21572—1995)18-332 7.12.19離心泵及轉子泵軸封系統18-336 第8章 真空密封 8.1真空用橡膠密封圈18-347 8.1.1真空用橡膠密封圈結構形式18-347 8.1.2真空用橡膠密封圈標準18-347 8.1.2.1J型真空用橡膠密封圈的型式及系列尺寸18-347 8.1.2.2J型真空用橡膠密封圈壓套的型式及系列尺寸18-347 8

.1.2.3密封墊圈的型式及系列尺寸18-347 8.1.2.4JO型真空用橡膠密封圈的型式及系列尺寸18-347 8.1.2.5JO型真空用橡膠密封圈鎖緊彈簧的型式及系列尺寸18-347 8.1.2.6JO型真空用橡膠密封圈壓套的型式及系列尺寸18-348 8.1.2.7骨架型真空用橡膠密封圈的型式及系列尺寸18-348 8.1.2.8真空用O形橡膠密封圈的型式及系列尺寸18-348 8.1.2.9真空用O形橡膠密封圈壓套的型式及系列尺寸18-348 8.1.2.10真空用O形橡膠密封圈平墊的型式及系列尺寸18-348 8.1.2.11真空用O形橡膠圈材料18-348 8.2真空用金屬密封圈

18-348 第9章 迷宮密封 9.1迷宮密封方式、特點、結構及應用18-349 9.2迷宮密封設計18-349 第10章 浮環密封 10.1浮環密封結構特點及應用18-351 10.2浮環密封設計18-352 10.3碳石墨浮環密封結構及應用18-354 第11章 螺旋密封 11.1螺旋密封方式、特點及應用18-355 11.2螺旋密封設計18-355 11.3矩形螺紋的螺旋密封計算18-356 第12章 磁流體密封 12.1磁流體密封的結構和工作原理18-358 12.2提高磁流體密封能力的主要途徑18-358 12.3磁流體密封與其他密封形式的對比18-358 第13章 離心密

封 13.1離心密封結構形式18-359 13.2離心密封的計算18-359 參考文獻18-361 《現代機械設計手冊》第一版自2011年3月出版以來,贏得了機械設計人員、工程技術人員和高等院校專業師生廣泛的青睞和好評,榮獲了2011年全國優秀暢銷書(科技類)。同時,因其在機械設計領域重要的科學價值、實用價值和現實意義,《現代機械設計手冊》還榮獲2009年國家出版基金資助和2012年中國機械工業科學技術獎。 《現代機械設計手冊》第一版出版距今已經8年,在這期間,我國的裝備製造業發生了許多重大的變化,尤其是2015年國家部署並頒佈了實現中國製造業發展的十年行動綱領——中國

製造2025,發佈了針對“中國製造2025”的五大“工程實施指南”,為機械製造業的未來發展指明了方向。在國家政策號召和驅使下,我國的機械工業獲得了快速的發展,自主創新的能力不斷加強,一批高技術、高性能、高精尖的現代化裝備不斷湧現,各種新材料、新工藝、新結構、新產品、新方法、新技術不斷產生、發展並投入實際應用,大大提升了我國機械設計與製造的技術水準和國際競爭力。《現代機械設計手冊》第二版最重要的原則就是緊密結合“中國製造2025”國家規劃和創新驅動發展戰略,在內容上與時俱進,全面體現創新、智慧、節能、環保的主題,進一步呈現機械設計的現代感。鑒於此,《現代機械設計手冊》第二版被列入了“十三五國家重

點出版物規劃專案”。 在本版手冊的修訂過程中,我們廣泛深入機械製造企業、設計院、科研院所和高等院校進行調研,聽取各方面讀者的意見和建議,最終確定了《現代機械設計手冊》第二版的根本宗旨:一方面,新版手冊進一步加強機、電、液、控制技術的有機融合,以全面適應機器人等智慧化裝備系統設計開發的新要求;另一方面,隨著現代機械設計方法和工程設計軟體的廣泛應用和普及,新版手冊繼續促進傳動設計與現代設計的有機結合,將各種新的設計技術、計算技術、設計工具全面融入傳統的機械設計實際工作中。 《現代機械設計手冊》第二版共6卷35篇,它是一部面向“中國製造2025”,適應智慧裝備設計開發新要求、技術先進、資料可靠、

符合現代機械設計潮流的現代化的機械設計大型工具書,涵蓋現代機械零部件及傳動設計、智慧裝備及控制設計、現代機械設計方法及應用三部分內容,具有以下六大特色。 1.權威性。《現代機械設計手冊》陣容強大,編、審人員大都來自設計、生產、教學和科研第一線,具有深厚的理論功底、豐富的設計實踐經驗。他們中很多人都是所屬領域的知名專家,在業內有廣泛的影響力和知名度,獲得過多項國家和省部級科技進步獎、發明獎和技術專利,承擔了許多機械領域國家重要的科研和攻關項目。這支專業、權威的編審隊伍確保了手冊準確、實用的內容品質。 2.現代感。追求現代感,體現現代機械設計氣氛,滿足時代要求,是《現代機械設計手冊》的基本宗旨

。“現代”二字主要體現在:新標準、新技術、新材料、新結構、新工藝、新產品、智慧化、現代的設計理念、現代的設計方法和現代的設計手段等幾個方面。第二版重點加強機械智慧化產品設計(3D列印、智慧零部件、節能元器件)、智慧裝備(機器人及智慧化裝備)控制及系統設計、數位化設計等內容。 (1)“零件結構設計”等篇進一步完善零部件結構設計的內容,結合目前的3D列印(增材製造)技術,增加3D列印工藝下零件結構設計的相關技術內容。 “機械工程材料”篇增加3D列印材料以及新型材料的內容。 (2)機械零部件及傳動設計各篇增加了新型智慧零部件、節能元器件及其應用技術,例如“滑動軸承”篇增加了新型的智慧軸承,“潤

滑”篇增加了微量潤滑技術等內容。 (3)全面增加了工業機器人設計及應用的內容:新增了“工業機器人系統設計”篇;“智慧裝備系統設計”篇增加了工業機器人應用開發的內容;“機構”篇增加了自動化機構及機構創新的內容;“減速器、變速器”篇增加了工業機器人減速器選用設計的內容;“帶傳動、鏈傳動”篇增加並完善了工業機器人適用的同步帶傳動設計的內容;“齒輪傳動”篇增加了RV減速器傳動設計、諧波齒輪傳動設計的內容等。 (4)“氣壓傳動與控制”“液壓傳動與控制”篇重點加強並完善了控制技術的內容,新增了氣動系統自動控制、氣動人工肌肉、液壓和氣動新型智慧元器件及新產品等內容。 (5)繼續加強第5卷機電控制系統設

計的相關內容:除增加“工業機器人系統設計”篇外,原“機電一體化系統設計”篇充實擴充形成“智慧裝備系統設計”篇,增加並完善了智慧裝備系統設計的相關內容,增加智慧裝備系統開發實例等。 “感測器”篇增加了機器人感測器、航空航太裝備用感測器、微機械感測器、智慧感測器、無線感測器的技術原理和產品,加強感測器應用和選用的內容。 “控制元器件和控制單元”篇和“電動機”篇全面更新產品,重點推薦了一些新型的智慧和節能產品,並加強產品選用的內容。 (6)第6卷進一步加強現代機械設計方法應用的內容:在3D列印、數位化設計等智慧製造理念的宣導下,“逆向設計”“數位化設計”等篇全面更新,體現了“智慧工廠”的全數位

化設計的時代特徵,增加了相關設計應用實例。 增加“綠色設計”篇;“創新設計”篇進一步完善了機械創新設計原理,全面更新創新實例。 (7)在貫徹新標準方面,收錄並合理編排了目前最新頒佈的國家和行業標準。 3.實用性。新版手冊繼續加強實用性,內容的選定、深度的把握、資料的取捨和章節的編排,都堅持從設計和生產的實際需要出發:例如機械零部件資料資料主要依據最新國家和行業標準,並給出了相應的設計實例供設計人員參考;第5卷機電控制設計部分,完全站在機械設計人員的角度來編寫——注重產品如何選用,摒棄或簡化了控制的基本原理,突出機電系統設計,控制元器件、感測器、電動機部分注重介紹主流產品的技術參數、性能、

應用場合、選用原則,並給出了相應的設計選用實例;第6卷現代機械設計方法中簡化了煩瑣的數學推導,突出了最終的計算結果,結合具體的算例將設計方法通俗地呈現出來,便於讀者理解和掌握。 為方便廣大讀者的使用,手冊在具體內容的表述上,採用以圖表為主的編寫風格。這樣既增加了手冊的資訊容量,更重要的是方便了讀者的查閱使用,有利於提高設計人員的工作效率和設計速度。 為了進一步增加手冊的承載容量和時效性,本版修訂將部分篇章的內容放入二維碼中,讀者可以用手機掃描查看、下載列印或存儲在PC端進行查看和使用。二維碼內容主要涵蓋以下幾方面的內容:即將被廢止的舊標準(新標準一旦正式頒佈,會及時將二維碼內容更新為新標準

的內容);部分推薦產品及參數;其他相關內容。 4.通用性。本手冊以通用的機械零部件和控制元器件設計、選用內容為主,主要包括機械設計基礎資料、機械製圖和幾何精度設計、機械工程材料、機械通用零部件設計、機械傳動系統設計、液壓和氣壓傳動系統設計、機構設計、機架設計、機械振動設計、智慧裝備系統設計、控制元器件和控制單元等,既適用于傳統的通用機械零部件設計選用,又適用于智慧化裝備的整機系統設計開發,能夠滿足各類機械設計人員的工作需求。 5.準確性。本手冊儘量採用原始資料,公式、圖表、資料力求準確可靠,方法、工藝、技術力求成熟。所有材料、零部件和元器件、產品和工藝方面的標準均採用最新公佈的標準資料,對

於標準規範的編寫,手冊沒有簡單地照抄照搬,而是採取選用、摘錄、合理編排的方式,強調其科學性和準確性,儘量避免差錯和謬誤。所有設計方法、計算公式、參數選用均經過長期檢驗,設計實例、各種算例均來自工程實際。手冊中收錄通用性強、標準化程度高的產品,供設計人員在瞭解企業實際生產品種、規格尺寸、技術參數,以及產品品質和使用者的實際反映後選用。 6.全面性。本手冊一方面根據機械設計人員的需要,按照“基本、常用、重要、發展”的原則選取內容,另一方面兼顧了製造企業和大型設計院兩大群體的設計特點,即製造企業側重基礎性的設計內容,而大型的設計院、工程公司側重於產品的選用。因此,本手冊力求實現零部件設計與整機系統

開發的和諧統一,促進機械設計與控制設計的有機融合,強調產品設計與工藝技術的緊密結合,重視工藝技術與選用材料的合理搭配,宣導結構設計與造型設計的完美統一,以全面適應新時代機械新產品設計開發的需要。 經過廣大編審人員和出版社的不懈努力,新版《現代機械設計手冊》將以嶄新的風貌和鮮明的時代氣息展現在廣大機械設計工作者面前。值此出版之際,謹向所有給過我們大力支持的單位和各界朋友表示衷心的感謝! 主編

機車傳動零件尺寸設計及熱處理參數最佳化

為了解決齒輪油黏度指數的問題,作者龔啟良 這樣論述:

機車傳動零件尺寸設計及熱處理參數最佳化研究生:龔啟良 指導教授:許兆民 博士 國立高雄科技大學機械工程系博士班摘要本文以機車引擎零件為例,在連桿、變速鼓撥叉、驅動軸及終端軸等重要零件,使用有限元素法及田口法,利用金相顯微鏡、洛氏硬度機、維克氏微小硬度及齒形量測機進行量測值輸出,找出最佳化製程參數進行生產,研究結果如下所述: 透過有限元素法及能量法,發現梯形板件承受拉力負荷,梯形板件厚度對之伸長量、應變及應力貢獻度最大,使用有限元素法及能量法結果一致,板厚愈小其伸長量、應變及應力愈大。連桿使用有限元素法

模擬承受拉力負荷,發現桿件厚度對最大伸長量的貢獻度最大,板厚愈小伸長量愈大;連桿小端孔肉厚對應變及應力的貢獻度最大,孔肉厚愈小其應變及應力愈大。 驅動軸滲碳淬火熱處理使用田口法的變異數分析,獲得最佳參數:淬火油溫130℃,攪拌器合理轉速160轉/分,置於下層,改善後減少了10.3um齒輪的導程變形量,表面硬度控制在HRA81以上。 高週波淬火爪部外部硬度,最佳參數條件:高週波淬火出力 28kw、加熱時間1.2s,表面硬度提升HRC7.25,內部硬度提升Hv0.3289~314。 終端軸牙部熱處理最佳化參數條件:滲碳防止劑黏度指數33dps、滲碳防止劑浸泡1次、烘乾溫度1

60℃、浸泡後等待烘乾時間60分,表面硬度值提升22%。 驅動軸牙部熱處理最佳化參數條件:黏度指數33dps、滲碳防止劑浸泡1次、烘乾溫度使用180℃、浸泡後等待烘乾時間120分,表面硬度值提升16.3%。 終端軸及驅動軸牙部滲碳防止劑浸泡工程,使用升降台浸泡,降低人工浸泡誤差,提升牙部滲碳防止劑效果,牙部取消高週波退火,製程減少1人工需求。關鍵字:有限元素法、田口法、熱處理變形、高週波淬火、滲碳防止

機械設計手冊(第六版)(第4卷)

為了解決齒輪油黏度指數的問題,作者成大先(主編) 這樣論述:

第六版共5卷,涵蓋了機械常規設計的所有內容。其中第1卷包括一般設計資料,機械制圖、極限與配合、形狀和位置公差及表面結構,常用機械工程材料,機構,機械產品結構設計;第2卷包括連接與緊固,軸及其連接,軸承,起重運輸機械零部件,操作件、小五金及管件;第3卷包括潤滑與密封,彈簧,螺旋傳動、摩擦輪傳動,帶、鏈傳動,齒輪傳動;第4卷包括多點嚙合柔性傳動,減速器、變速器,常用電機、電器及電動(液)推桿與升降機,機械振動的控制及利用,機架設計;第5卷包括液壓傳動,液壓控制,氣壓傳動等。第六版是在總結前五版的成功經驗,考慮廣大讀者的使用習慣及對《機械設計手冊》提出新要求的基礎上進行編寫的。保持了前五版的風格、特

色和品位:突出實用性,從機械設計人員的角度考慮,合理安排內容取舍和編排體系;強調准確性,數據、資料主要來自標准、規范和其他權威資料,設計方法、公式、參數選用經過長期實踐檢驗,設計舉例來自工程實踐;反映先進性,增加了許多適合我國國情、具有廣闊應用前景的新材料、新方法、新技術、新工藝,采用了新標准和規范,廣泛收集了具有先進水平並實現標准化的新產品;突出了實用、便查的特點。可作為機械設計人員和有關工程技術人員的工具書,也可供高等院校有關專業師生參考使用。 第16篇多點嚙合柔性傳動第1章 概述16-31原理和特征16-31.1原理16-31.2特征16-32基本類型16-32.1分類

16-32.2懸掛形式與其他特征的組合16-43結構和性能16-44優越性及應用16-114.1優越性16-114.2應用16-115有關結構實例的說明16-11第2章 懸掛安裝結構16-121整體外殼式16-121.1初級減速器固定式安裝結構16-121.2初級減速器懸掛式安裝結構16-121.2.1初級減速器串接柔性支承為拉壓桿(或彈簧)16-121.2.2初級減速器串接柔性支承為彎曲桿16-132固定滾輪式(BF型)16-153推桿式(BFP型)16-164拉桿式(BFT型)16-165偏心滾輪式(TSP型)16-18第3章 懸掛裝置的設計計算16-191整體外殼式16-191.1全懸掛

、自平衡扭力桿裝置16-191.2全懸掛、扭力桿串接彎曲桿裝置16-191.3全懸掛、彈簧串接拉壓桿裝置16-201.4全懸掛、彈簧液壓串接彈簧裝置16-211.5全懸掛、單作用式拉壓桿裝置16-212固定滾輪式(BF型)16-213推桿式(BFP型)16-234拉桿式(BFT型)16-245偏心滾輪式(TSP型)16-28第4章 柔性支承的結構型式和設計計算16-311單作用式16-312自平衡式16-343並接式(雙作用式)16-354串接式16-375調整式16-406液壓阻尼器16-41第5章 專業技術特點16-421均載技術16-421.1單台電動機驅動多個嚙合點時16-421.2多

台電動機驅動多個嚙合點時16-421.2.1自動控制方法16-421.2.2機電控制方法16-432安全保護技術16-442.1扭力桿保護裝置16-442.2過載保護裝置16-453中心距可變與側隙調整16-463.1輥子的外形尺寸和性能16-463.1.1輥子的外形尺寸16-463.1.2輥子的性能16-473.2側隙調整和控制16-473.2.1齒輪側隙在傳動中的重要性16-473.2.2傳動最小側隙的保證16-484設計與結構特點16-494.1合理確定末級傳動副的型式和結構參數16-494.1.1銷齒傳動等新型傳動應逐步推廣和發展16-494.1.2目前末級減速宜采用高度變位漸開線直齒

齒輪16-504.2嚙合點數的選擇16-504.3各種懸掛安裝形式的特點及適用性16-504.3.1整體外殼式(PGC型等)16-514.3.2固定滾輪式(BF型)16-514.3.3推桿式(BFP型)16-514.3.4拉桿式(BFT型)16-514.3.5偏心滾輪式(TSP型)16-514.4柔性支承的特性和結構要求16-514.4.1單作用式16-514.4.2自平衡式16-524.4.3並接式(雙作用式)16-524.4.4串接式16-524.4.5調整式16-52第6章 整體結構的技術性能、尺寸系列和選型方法16-531國內多柔傳動裝置的結構、性能和尺寸系列16-531.1整體外殼式

之一(PGC型,四點嚙合,自平衡扭力桿)16-531.2整體外殼式之二(四點嚙合,自平衡扭力桿串接彎曲桿)16-541.3整體外殼式之三(四點嚙合,單作用彈簧緩沖裝置串接拉壓桿,有均載調節機構)16-551.4整體外殼式之四(兩點嚙合,自平衡扭力桿串接彎曲桿)16-571.5固定滾輪式(BF型)16-581.6拉桿式(BFT型,兩點嚙合,自平衡扭力桿串接彈簧)16-592國外多柔傳動裝置的結構、尺寸系列及選型16-622.1日本椿本公司的尺寸系列及選型方法16-622.1.1拉桿式(BFT型)16-622.1.2固定滾輪式(BF型)和推桿式(BFP型)16-642.2德國克虜伯公司BFT型尺寸

系列16-662.3法國迪朗齒輪公司BFT型尺寸系列及選型方法16-67第7章 多點嚙合柔性傳動動力學計算16-711全懸掛多點嚙合柔性傳動扭振動力學計算(以氧氣轉爐為例)16-711.1系統力學模型16-711.2建立運動微分方程(三質量系統,按非零度區預張緊啟動工況)16-731.3運動微分方程求解16-731.3.1固有振動解(按模態分析法)16-731.3.2強迫振動解16-751.4扭振力矩16-792半懸掛多點嚙合柔性傳動扭振動力學計算(以燒結機為例)16-792.1系統力學模型16-792.2建立運動微分方程(四質量系統)16-812.3運動微分方程求解(初始條件為零)16-81

2.4系統扭振力矩的計算16-883分析說明16-884結論16-88第7章 附錄16-89參考文獻16-92第17篇減速器、變速器第1章 減速器設計一般資料及設計舉例17-31減速器設計一般資料17-31.1常用減速器的分類、形式及其應用范圍17-31.2圓柱齒輪減速器標准中心距(摘自JB/T 9050.4—2006)17-51.3減速器傳動比的分配及計算17-61.4減速器的結構尺寸17-101.4.1減速器的基本結構17-101.4.2齒輪減速器、蝸桿減速器箱體尺寸17-111.4.3減速器附件17-141.5減速器軸承的選擇17-181.6減速器主要零件的配合17-191.7齒輪與蝸桿

傳動的效率和散熱計算17-191.7.1齒輪與蝸桿傳動的效率計算17-191.7.2齒輪與蝸桿傳動的散熱計算17-211.8齒輪與蝸桿傳動的潤滑17-231.8.1齒輪與蝸桿傳動的潤滑方法17-231.8.2齒輪與蝸桿傳動的潤滑油選擇(摘自JB/T 8831—2001)17-261.9減速器技術要求17-271.10減速器典型結構示例17-281.10.1圓柱齒輪減速器17-281.10.2圓錐齒輪減速器17-321.10.3圓錐-圓柱齒輪減速器17-331.10.4蝸桿減速器17-341.10.5齒輪-蝸桿減速器17-382減速器設計舉例17-392.1通用橋式起重機減速器設計17-392.

1.1基本步驟17-392.1.2技術條件17-392.1.3確定工作級別17-392.1.4確定減速器速比17-412.1.5確定電機功率17-412.1.6確定減速器功率17-412.1.7安裝及裝配形式17-412.1.8確定傳動參數17-422.1.9齒輪承載能力計算17-432.1.10齒輪修形計算17-462.1.11軸系設計17-472.1.12軸承選用17-482.2風力發電用增速齒輪箱設計17-492.2.1概述17-492.2.2特點及技術趨勢17-492.2.3750kW風電齒輪箱設計舉例17-49第2章 標准減速器及產品17-651ZDY、ZLY、ZSY型硬齒面圓柱齒輪

減速器(摘自JB/T 8853—2001)17-651.1適用范圍和代號17-651.2外形、安裝尺寸及裝配形式17-651.3承載能力17-691.4減速器的選用17-732QDX點線嚙合齒輪減速器(摘自JB/T 11619—2013)17-752.1適用范圍、代號和安裝形式17-752.2外形、安裝尺寸17-772.3承載能力17-842.4減速器的選用17-903DB、DC型圓錐、圓柱齒輪減速器(摘自JB/T 9002—1999)17-943.1適用范圍和代號17-943.2外形、安裝尺寸和裝配形式17-943.3承載能力17-1013.4實際傳動比17-1053.5減速器的選用17-1

054CW型圓弧圓柱蝸桿減速器(摘自JB/T 7935—1999)17-1074.1適用范圍和標記17-1074.2外形、安裝尺寸17-1084.3承載能力和效率17-1094.4潤滑油牌號(黏度等級)17-1124.5減速器的選用17-1135TP型平面包絡環面蝸輪減速器(摘自JB/T 9051—2010)17-1145.1適用范圍和標記17-1145.2外形、安裝尺寸17-1155.3承載能力17-1185.4減速器的總效率17-1205.5減速器的選用17-1216HWT、HWB型直廓環面蝸桿減速器(摘自JB/T 7936—2010)17-1226.1適用范圍和標記17-1226.2外形

、安裝尺寸17-1236.3承載能力及總傳動效率17-1256.4減速器的選用17-1327行星齒輪減速器17-1337.1NGW型行星齒輪減速器(摘自JB/T 6502—1993)17-1337.1.1適用范圍、標記及相關技術參數17-1337.1.2外形、安裝尺寸17-1367.1.3承載能力17-1507.1.4減速器的選用17-1597.2NGW-S型行星齒輪減速器17-1617.2.1適用范圍和標記17-1617.2.2外形、安裝尺寸17-1627.2.3承載能力17-1647.2.4減速器的選用17-1667.3垂直出軸星輪減速器(摘自JB/T 7344—2010)17-1677.

3.1適用范圍及標記17-1677.3.2外形、安裝尺寸17-1687.3.3承載能力17-1707.3.4減速器的選用17-1728擺線針輪減速器17-1748.1概述17-1748.2擺線針輪減速器17-1768.2.1標記方法及使用條件17-1768.2.2外形、安裝尺寸17-1778.2.3承載能力17-2008.2.4減速器的選用17-2319諧波傳動減速器17-2319.1工作原理與特點17-2319.2XB、XBZ型諧波傳動減速器 (摘自GB/T 14118—1993)17-2339.2.1外形、安裝尺寸17-2339.2.2承載能力17-2369.2.3使用條件及主要技術指標1

7-2389.2.4減速器的選用17-23810三環減速器17-23910.1工作原理、特點及適用范圍17-23910.2結構形式與特征17-24010.3裝配形式17-24110.4外形、安裝尺寸(摘自YB/T 079—2005)17-24310.5承載能力17-24910.6減速器的選用17-25511釜用立式減速器(浙江長城減速機有限公司)17-25511.1X系列釜用立式擺線針輪減速器(摘自HG/T 3139.2—2001)17-25511.1.1外形、安裝尺寸17-25611.1.2承載能力17-25911.2LC型立式兩級硬齒面圓柱齒輪減速器(摘自HG/T 3139.3—2001)

17-26311.2.1外形、安裝尺寸17-26311.2.2承載能力17-26411.3FJ型硬齒面圓柱、圓錐齒輪減速器(摘自HG/T 3139.5—2001)17-26511.3.1外形、安裝尺寸17-26511.3.2承載能力17-26711.4LPJ、LPB、LPP型平行軸硬齒面圓柱齒輪減速器(摘自HG/T 3139.4—2001)17-26811.4.1外形、安裝尺寸17-26811.4.2承載能力17-27011.5FP型中功率窄V帶及高強力V帶傳動減速器(摘自HG/T 3139.10—2001)17-27211.5.1外形、安裝尺寸17-27211.5.2承載能力17-27311

.6YP型帶傳動減速器(摘自HG/T 3139.11—2001)17-27411.6.1外形、安裝尺寸17-27411.6.2承載能力17-27611.7釜用減速器附件17-27711.7.1XD型單支點機架17-27711.7.2XS型雙支點機架17-28011.7.3FZ型雙支點方底板機架17-28311.7.4JQ型夾殼聯軸器17-28511.7.5GT、DF型剛性凸緣聯軸器17-28611.7.6SF型三分式聯軸器17-28811.7.7TK型彈性塊式聯軸器17-28912同軸式圓柱齒輪減速器(摘自JB/T 7000—2010)17-29012.1適用范圍17-29012.2代號與標記

示例17-29112.3減速器的外形及安裝尺寸17-29112.4實際傳動比及承載能力17-30012.5減速器的選用17-32313TH、TB型硬齒面齒輪減速器17-32613.1適用范圍及代號示例17-32613.2裝配布置型式17-32613.3外形、安裝尺寸17-32713.4承載能力17-35013.5減速器的選用17-36514TR系列斜齒輪硬齒面減速機17-36814.1標記示例17-36914.2TR系列減速機裝配形式17-36914.3TR系列減速機外形、安裝尺寸17-37014.4TR系列減速機承載能力17-373第3章 機械無級變速器及產品17-3941機械無級變速器的基

本知識、類型和選用17-3941.1傳動原理17-3941.2特點和應用17-3961.3機械特性17-3961.4類型、特性和應用示例17-3971.5選用的一般方法17-4011.5.1類型選擇17-4011.5.2容量選擇17-4012錐盤環盤無級變速器17-4022.1概述17-4022.2SPT系列減變速機的型號、技術參數及基本尺寸17-4022.3ZH系列減變速機的型號、技術參數及基本尺寸17-4043行星錐盤無級變速器17-4093.1概述17-4093.2行星錐盤無級變速器17-4104環錐行星無級變速器17-4164.1概述17-4164.2環錐行星無級變速器17-4164.

2.1適用范圍及標記示例17-4164.2.2技術參數、外形及安裝尺寸17-4174.2.3選型方法17-4195帶式無級變速器17-4195.1概述17-4195.2V形寬帶無級變速器17-4206齒鏈式無級變速器17-4226.1概述17-4226.1.1特點及用途17-4226.1.2變速原理17-4226.1.3調速范圍17-4236.2P型齒鏈式無級變速器17-4236.2.1適用范圍及標記示例17-4236.2.2技術參數、外形及安裝尺寸17-4247三相並列連桿式脈動無級變速器17-4257.1概述17-4257.2三相並列連桿式脈動無級變速器17-4267.2.1適用范圍及標記

示例17-4267.2.2外形、安裝尺寸17-4277.2.3性能參數17-4288四相並列連桿式脈動無級變速器17-4289多盤式無級變速器17-4309.1概述17-4309.2特點、工作特性和選用17-4319.3型號標記、技術參數和外形、安裝尺寸17-431參考文獻17-434第18篇常用電機、電器及電動(液)推桿與升降機第1章 常用電機18-31電動機的特性、工作狀態及其發熱與溫升18-32電動機的選擇18-82.1選擇電動機應綜合考慮的問題18-82.2電動機選擇順序18-82.3電動機類型選擇18-82.4電動機電壓和轉速的選擇18-102.5異步電動機的調速運行18-112.6

電動機功率計算18-122.7電動機功率計算與選用舉例18-213異步電動機常見故障18-284常用電動機規格18-294.1旋轉電機整體結構的防護等級(IP代碼)分級(摘自GB/T 4942.1—2006)18-294.2旋轉電動機結構及安裝型式(IM代碼)(摘自GB/T 997—2008)18-304.3常用電動機的特點及用途18-374.4一般異步電動機18-414.4.1Y2系列(IP54)(摘自JB/T 8680—2008)、Y3系列(IP55)(摘自GB/T 25290—2010)三相異步電動機18-414.4.2Y系列(IP44)三相異步電動機(摘自JB/T 10391—2008

)18-534.4.3Y系列(IP23)三相異步電動機(摘自JB/T 5271—2010)18-624.4.4YR系列(IP44)三相異步電動機(摘自JB/T 7119—2010)18-654.4.5YR3系列(IP23)三相異步電動機(摘自JB/T 5269—2007)18-684.4.6Y、YR系列中型三相異步電動機(660V)18-714.4.7YX3系列(IP55)高效率三相異步電動機(摘自GB/T 22722—2008)18-734.4.8YH系列(IP44)高轉差率三相異步電動機(摘自JB/T 6449—2010)18-814.4.9YEJ系列(IP44)電磁制動三相異步電動機(摘

自JB/T 6456—2010)18-874.5變速和減速異步電動機18-924.5.1YD系列(IP44)變極多速三相異步電動機(摘自JB/T 7127—2010)18-924.5.2YCT(摘自JB/T 7123—2010)、YCTD(摘自JB/T 6450—2010)系列電磁調速三相異步電動機18-984.5.3YCJ系列齒輪減速三相異步電動機(摘自JB/T 6447—2010)18-1014.5.4YVP(IP44)系列變頻調速三相異步電動機18-1104.5.5冶金及起重用變頻調速三相異步電動機18-1144.6YZ(摘自JB/T 10104—2011)、YZR(摘自JB/T 101

05—1999)YZR3(摘自GB/T 21973—2008)系列起重及冶金用三相異步電動機18-1174.6.1YZ、YZR系列起重及冶金用三相異步電動機技術數據18-1174.6.2YZ、YZR系列起重及冶金用電動機的安裝尺寸與外形尺寸18-1194.7防爆異步電動機18-1224.7.1YB3、YB2系列隔爆型三相異步電動機(摘自JB/T 7565.1—2011、JB/T 7565.2—2002、JB/T 7565.3—2004、JB/T 7565.4—2004)18-1234.7.2YA系列增安型三相異步電動機(摘自JB/T 9595—1999、JB/T 8972—2011)18-13

24.8小功率電動機18-1404.9YZU系列三相異步振動電動機(摘自JB/T 5330—2007)18-1454.10小型盤式制動電動機18-1474.10.1YPE三相異步盤式制動電動機18-1474.10.2YHHPY起重用盤式制動電動機18-1494.11直流電機18-1504.11.1Z4系列直流電動機(摘自JB/T 6316—2006)18-1514.11.2測速發電機18-1654.12控制電動機18-1714.12.1MINAS A4系列交流伺服電動機18-1714.12.2AKM系列永磁無刷直流伺服電動機18-1794.12.3BYG系列混合式步進電機18-1954.13電

動機滑軌18-201第2章 常用電器18-2041電磁鐵18-2041.1MQD1系列牽引電磁鐵18-2041.2直流牽引電磁鐵18-2052行程開關18-2072.1LXP1(3SE3)系列行程開關18-2072.2LX19系列行程開關18-2102.3LXZ1系列精密組合行程開關18-2122.4LXW6系列微動開關18-2132.5WL型雙回路行程開關18-2153接近開關18-2263.1LXJ6系列接近開關18-2263.2LXJ7系列接近開關18-2273.3LXJ8(3SG)系列接近開關18-2273.4E2系列接近開關18-2343.5超聲波接近開關18-2394光電開關18-

2405傳感器18-2455.1傳感器命名法及代碼(摘自GB/T 7666—2005)18-2465.1.1傳感器命名方法18-2465.1.2傳感器代號標記方法18-2475.2傳感器圖用圖形符號(摘自GB/T 14479—1993)18-2495.2.1傳感器圖形符號的組合18-2495.2.2傳感器圖形符號表示規則18-2495.3傳感器產品18-2515.3.1常用拉壓力傳感產品18-2515.3.2常用扭矩傳感器18-2555.3.3位移和位置傳感器18-2595.3.4線速度傳感器18-2655.3.5角速度(轉速)傳感器18-2685.3.6距離傳感器18-2705.3.7物位傳

感器18-2716管狀電加熱元件(摘自JB/T 2379—1993)18-2736.1管狀電加熱元件的型號與用途18-2736.2管狀電加熱元件的結構及使用說明18-2746.3管狀電加熱元件的常用設計、計算公式和參考數據18-2746.4JGQ型管狀電加熱元件18-2756.5JGY型管狀電加熱元件18-2776.6JGS型管狀電加熱元件18-2786.7JGX1,2,3型及JGJ1,2,3型管狀電加熱元件18-2796.8JGM型管狀電加熱元件18-280第3章 電動、液壓推桿與升降機18-2821電動推桿18-2821.1一般電動推桿18-2821.2伺服電動推桿18-2911.3應用示

例18-2942電液推桿18-2942.1電動液壓缸18-2942.1.1UE系列電動液壓缸與系列液壓泵技術參數18-2942.1.2UEC系列直列式電動液壓缸選型方法18-2982.1.3UEG系列並列式電動液壓缸選型方法18-3002.2電液推桿及電液轉角器18-3062.2.1DYT(B)電液推桿18-3062.2.2ZDY電液轉角器18-3122.2.3有關說明18-3133升降機18-3143.1SWL蝸輪螺桿升降機(摘自JB/T 8809—2010)18-3143.1.1型式及尺寸18-3143.1.2性能參數18-3183.1.3驅動功率的計算18-3223.1.4蝸桿軸伸的許用

徑向力18-3223.1.5螺桿長度與極限載荷的關系18-3233.1.6螺桿許用側向力Fs和軸向力Fa與行程的關系18-3243.1.7工作持續率與環境溫度的關系18-3253.2其他升降機18-325參考文獻18-326第19篇機械振動的控制及利用第1章 概述19-51機械振動的分類及機械工程中的振動問題19-51.1機械振動的分類19-51.2機械工程中常遇到的振動問題19-62機械振動等級的評定19-72.1振動烈度的確定19-72.2對機器的評定19-82.3其他設備振動烈度舉例19-9第2章 機械振動的基礎資料19-101機械振動表示方法19-101.1簡諧振動表示方法19-101

.2周期振動幅值表示法19-111.3振動頻譜表示法19-112彈性構件的剛度19-123阻尼系數19-153.1線性阻尼系數19-153.2非線性阻尼的等效線性阻尼系數19-164振動系統的固有角頻率19-174.1單自由度系統的固有角頻率19-174.2二自由度系統的固有角頻率19-214.3各種構件的固有角頻率19-234.4結構基本自振周期的經驗公式19-285簡諧振動合成19-295.1同向簡諧振動的合成19-295.2異向簡諧振動的合成19-306各種機械產生振動的擾動頻率19-32第3章 線性振動19-331單自由度系統自由振動模型參數及響應19-332單自由度系統的受迫振動19

-352.1簡諧受迫振動的模型參數及響應19-352.2非簡諧受迫振動的模型參數及響應19-372.3無阻尼系統對常見沖擊激勵的響應19-383直線運動振系與定軸轉動振系的參數類比19-394共振關系19-405回轉機械在啟動和停機過程中的振動19-415.1啟動過程的振動19-415.2停機過程的振動19-416多自由度系統19-426.1多自由度系統自由振動模型參數及其特性19-426.2二自由度系統受迫振動的振幅和相位差角計算公式19-447機械系統的力學模型19-447.1力學模型的簡化原則19-457.2等效參數的轉換計算19-458線性振動的求解方法及示例19-478.1運動微分方

程的建立方法19-478.1.1牛頓第二定律示例19-478.1.2拉格朗日法19-478.1.3用影響系數法建立系統運動方程19-488.2求解方法19-498.2.1求解方法19-498.2.2實際方法及現代方法簡介19-508.2.3沖擊載荷示例19-518.2.4關於動剛度19-529轉軸橫向振動和飛輪的陀螺力矩19-539.1轉子的渦動19-539.2轉子質量偏心引起的振動19-539.3陀螺力矩19-54第4章 非線性振動與隨機振動19-551非線性振動19-551.1機械工程中的非線性振動類別19-551.2機械工程中的非線性振動問題19-561.3非線性力的特征曲線19-571

.4非線性系統的物理性質19-601.5分析非線性振動的常用方法19-631.6等效線性化近似解法19-631.7示例19-641.8非線性振動的穩定性19-652自激振動19-662.1自激振動和自振系統的特性19-662.2機械工程中常見的自激振動現象19-662.3單自由度系統相平面及穩定性19-683隨機振動19-713.1平穩隨機振動描述19-723.2單自由度線性系統的傳遞函數19-733.3單自由度線性系統的隨機響應19-744混沌振動19-75第5章 振動的控制19-771隔振與減振方法19-772隔振設計19-772.1隔振原理及一級隔振的動力參數設計19-772.2一級隔振

動力參數設計示例19-792.3二級隔振動力參數設計19-802.4二級隔振動力參數設計示例19-822.5隔振設計的幾個問題19-842.5.1隔振設計步驟19-842.5.2隔振設計要點19-852.5.3圓柱螺旋彈簧的剛度19-852.5.4隔振器的阻尼19-862.6隔振器的材料與類型19-862.7橡膠隔振器設計19-872.7.1橡膠材料的主要性能參數19-872.7.2橡膠隔振器剛度計算19-882.7.3橡膠隔振器設計要點19-893阻尼減振19-903.1阻尼減振原理19-903.2材料的損耗因子與阻尼層結構19-913.2.1材料的損耗因素與材料19-913.2.2橡膠阻尼

層結構19-923.2.3橡膠支承實例19-943.3線性阻尼隔振器19-943.3.1減振隔振器系統主要參數19-953.3.2最佳參數選擇19-963.3.3設計示例19-963.4非線性阻尼系統的隔振19-973.4.1剛性連接非線性阻尼系統隔振19-973.4.2彈性連接干摩擦阻尼減振隔振器動力參數設計19-993.5減振器設計19-993.5.1油壓式減振器結構特征19-993.5.2阻尼力特性19-1003.5.3設計示例19-1013.5.4摩擦阻尼器結構特征及示例19-1014阻尼隔振減振器系列19-1024.1橡膠減振器19-1024.1.1橡膠剪切隔振器的國家標准19-10

24.1.2常用橡膠隔振器的類型19-1034.2不銹鋼絲繩減振器19-1074.2.1主要特點19-1074.2.2選型原則與方法19-1084.2.3組合形式的金屬彈簧隔振器19-1134.3扭轉振動減振器19-1134.4新型可控減振器19-1154.4.1磁性液體19-1154.4.2磁流變液19-1165動力吸振器19-1175.1動力吸振器設計19-1175.1.1動力吸振器工作原理19-1175.1.2動力吸振器的設計19-1185.1.3動力吸振器附連點設計19-1195.1.4設計示例19-1195.2加阻尼的動力吸振器19-1205.2.1設計思想19-1205.2.2減振

吸振器的最佳參數19-1215.2.3減振吸振器的設計步驟19-1215.3二級減振隔振器設計19-1235.3.1設計思想19-1235.3.2二級減振隔振器動力參數設計19-1235.4擺式減振器19-1245.5沖擊減振器19-1255.6可控式動力吸振器示例19-1276緩沖器設計19-1276.1設計思想19-1276.1.1沖擊現象及沖擊傳遞系數19-1286.1.2速度階躍激勵及沖擊的簡化計算19-1296.1.3緩沖彈簧的儲能特性19-1306.1.4阻尼參數選擇19-1326.2一級緩沖器設計19-1336.2.1緩沖器的設計原則19-1336.2.2設計要求19-1336.

2.3一級緩沖器動力參數設計19-1346.2.4加速度脈沖激勵波形影響提示19-1346.3二級緩沖器的設計19-1347平衡法19-1357.1結構的設計19-1357.2轉子的平衡19-1357.3往復機械的平衡19-136第6章 機械振動的利用19-1381概述19-1381.1振動機械的用途及工藝特性19-1381.2振動機械的組成19-1391.3振動機械的頻率特性及結構特征19-1392振動輸送類振動機的運動參數19-1402.1機械振動指數19-1402.2物料的滑行運動19-1402.3物料拋擲指數19-1412.4常用振動機的振動參數19-1422.5物料平均速度19-14

22.6輸送能力與輸送槽體尺寸的確定19-1432.7物料的等效參振質量和等效阻尼系數19-1432.8振動系統的計算質量19-1442.9激振力和功率19-1443單軸慣性激振器設計19-1453.1平面運動單軸慣性激振器19-1453.2空間運動單軸慣性激振器19-1473.3單軸慣性激振器動力參數(遠超共振類)19-1473.4激振力的調整及滾動軸承19-1483.5用單軸激振器的幾種機械示例19-1483.5.1混凝土振搗器19-1483.5.2破碎粉磨機械19-1503.5.3圓形振動篩19-1514雙軸慣性激振器19-1534.1產生單向激振力的雙軸慣性激振器19-1534.2空間

運動雙軸慣性激振器19-1534.2.1交叉軸式雙軸慣性激振器19-1544.2.2平行軸式雙軸慣性激振器19-1544.3雙軸慣性激振器動力參數(遠超共振類)19-1554.4自同步條件及激振器位置19-1564.5用雙軸激振器的幾種機械示例19-1574.5.1雙軸振動顎式振動破碎機19-1574.5.2振動鑽進19-1574.5.3離心機19-1575其他各種形式的激振器19-1595.1行星輪式激振器19-1595.2混沌激振器19-1595.3電動式激振器19-1605.4電磁式激振器19-1605.5電液式激振器19-1615.6液壓射流激振器19-1625.7氣動式激振器19-1

625.8其他激振器19-1636近共振類振動機19-1646.1慣性共振式19-1646.1.1主振系統的動力參數19-1646.1.2激振器動力參數設計19-1656.2彈性連桿式19-1666.2.1主振系統的動力參數19-1666.2.2激振器動力參數設計19-1666.3主振系統的動力平衡——多質體平衡式振動機19-1676.4導向桿和橡膠鉸鏈19-1686.5振動輸送類振動機整體剛度和局部剛度的計算19-1686.6近共振類振動機工作點的調試19-1706.7間隙式非線性振動機及其彈簧設計19-1707振動機械動力參數設計示例19-1717.1遠超共振慣性振動機動力參數設計示例19

-1717.2慣性共振式振動機動力參數設計示例19-1727.3彈性連桿式振動機動力參數設計示例19-1748其他一些機械振動的應用實例19-1758.1多軸式慣性振動機19-1758.2混沌振動的設計例19-1768.2.1多連桿振動台19-1768.2.2雙偏心盤混沌激振器在振動壓實中的應用19-1768.3利用振動的拉拔19-1768.4振動時效技術應用19-1778.5聲波鑽進19-1789主要零部件19-1789.1三相異步振動電機19-1789.1.1部頒標准19-1789.1.2立式振動電機與防爆振動電機19-1819.2倉壁振動器19-1819.3橡膠——金屬螺旋復合彈簧19-

18310振動給料機19-18610.1部頒標准19-18610.2XZC型振動給料機19-18710.3FZC系列振動出礦機19-18811利用振動來監測纜索拉力19-19111.1測量弦振動計算索拉力19-19211.1.1弦振動測量原理19-19211.1.2MGH型錨索測力儀19-19211.2按兩端受拉梁的振動測量索拉力19-19311.2.1兩端受拉梁的振動測量原理19-19311.2.2高屏溪橋斜張鋼纜檢測部分簡介19-19311.3索拉力振動檢測的一些最新方法19-19511.3.1考慮索的垂度和彈性伸長λ19-19511.3.2頻差法19-19611.3.3拉索基頻識別工具箱

19-196第7章 機械振動測量技術19-1971概述19-1971.1測量在機械振動系統設計中的作用19-1971.2振動的測量方法19-1971.2.1振動測量的主要內容19-1971.2.2振動測量的類別19-1971.3測振原理19-1991.3.1線性系統振動量時間歷程曲線的測量19-1991.3.2測振原理19-1991.4振動測量系統圖示例19-2002數據采集與處理19-2002.1信號19-2002.1.1信號的類別19-2002.1.2振動波形因素與波形圖19-2002.2信號的頻譜分析19-2012.3信號發生器及力錘的應用19-2022.3.1信號發生器19-2022.

3.2力錘及應用19-2032.4數據采集系統19-2032.5數據處理19-2042.5.1數據處理方法19-2042.5.2數字處理系統19-2042.6智能化數據采集與分析處理、監測系統19-2053振動幅值測量19-2053.1光測位移幅值法19-2063.2電測振動幅值法19-2073.3激光干涉測量振動法19-2073.3.1光學多普勒干涉原理測量物體的振動19-2073.3.2低頻激光測振儀19-2074振動頻率與相位的測量19-2084.1李沙育圖形法19-2084.2標准時間法19-2084.3閃光測頻法19-2094.4數字頻率計測頻法19-2094.5振動頻率測量分析儀1

9-2094.6相位的測量19-2095系統固有頻率與振型的測定19-2105.1自由衰減振動法19-2105.2共振法19-2105.3頻譜分析法19-2105.4振型的測定19-2116阻尼參數的測定19-2116.1自由衰減振動法19-2116.2帶寬法19-212第8章 軸和軸系的臨界轉速19-2131概述19-2132簡單轉子的臨界轉速19-2132.1力學模型19-2132.2兩支承軸的臨界轉速19-2142.3兩支承單盤轉子的臨界轉速19-2153兩支承多圓盤轉子臨界轉速的近似計算19-2163.1帶多個圓盤軸的一階臨界轉速19-2163.2力學模型19-2163.3臨界轉速計算

公式19-2163.4計算示例19-2183.5簡略計算方法19-2194軸系的模型與參數19-2194.1力學模型19-2194.2滾動軸承支承剛度19-2204.3滑動軸承支承剛度19-2224.4支承阻尼19-2265軸系的臨界轉速計算19-2265.1傳遞矩陣法計算軸彎曲振動的臨界轉速19-2265.1.1傳遞矩陣19-2265.1.2傳遞矩陣的推求19-2275.1.3臨界轉速的推求19-2285.2傳遞矩陣法計算軸扭轉振動的臨界轉速19-2295.2.1單軸扭轉振動的臨界轉速19-2295.2.2分支系統扭轉振動的臨界轉速19-2315.3影響軸系臨界轉速的因素19-2326軸系臨

界轉速的修改和組合19-2326.1軸系臨界轉速的修改19-2326.2軸系臨界轉速的組合19-234參考文獻19-236第20篇機架設計第1章 機架結構概論20-51機架結構類型20-51.1按機架結構形式分類20-51.2按機架的材料和制造方法分類20-61.2.1按材料分20-61.2.2按制造方法分20-71.3按力學模型分類20-72桿系結構機架20-82.1機器的穩定性20-82.2桿系的組成規則20-82.2.1平面桿系的組成規則20-82.2.2空間桿系的幾何不變准則20-82.3平面桿系的自由度計算20-92.3.1平面桿系的約束類型20-92.3.2平面鉸接桿系的自由度計算

20-102.4桿系幾何特性與靜定特性的關系20-103機架設計的准則和要求20-113.1機架設計的准則20-113.2機架設計的一般要求20-113.3設計步驟20-124架式機架結構的選擇20-124.1一般規則20-124.2靜定結構與超靜定結構的比較20-134.3靜定桁架與剛架的比較20-144.4幾種桿系結構力學性能的比較20-144.5幾種桁架結構力學性能的比較20-155幾種典型機架結構形式20-175.1汽車車架20-175.1.1梁式車架20-185.1.2承載式車身車架20-195.1.3各種新型車架形式20-205.2摩托車車架和拖拉機架20-215.3起重運輸設備機

架20-225.3.1起重機機架20-225.3.2纜索起重機架20-265.3.3吊掛式帶式輸送機的鋼絲繩機架20-265.4挖掘機機架20-265.5管架20-285.6標准容器支座20-315.7大型容器支架20-335.8其他形式機架20-34第2章 機架設計的一般規定20-381載荷20-381.1載荷分類20-381.2組合載荷與非標准機架的載荷20-381.3雪載荷和冰載荷20-391.4風載荷20-391.5溫度變化引起的載荷20-421.6地震載荷20-422剛度要求20-442.1剛度的要求20-442.2《鋼結構設計規范》的規定20-442.3《起重機設計規范》的規定20

-452.4提高剛度的方法20-463強度要求20-463.1許用應力20-473.1.1基本許用應力20-473.1.2折減系數K020-473.1.3基本許用應力表20-473.2起重機鋼架的安全系數和許用應力20-493.3鉚焊連接基本許用應力20-493.4極限狀態設計法20-504機架結構的簡化方法20-504.1選取力學模型的原則20-514.2支座的簡化20-514.3結點的簡化20-524.4構件的簡化20-524.5簡化綜述及舉例20-535桿系結構的支座形式20-555.1用於梁和剛架或桁架的支座20-555.2用於柱和剛架的支座20-576技術要求20-587設計計算方法

簡介20-60第3章 梁的設計與計算20-621梁的設計20-621.1縱梁的結構設計20-621.1.1縱梁的結構20-621.1.2梁的連接20-621.1.3主梁的截面尺寸20-651.1.4梁截面的有關數據20-651.2主梁的上拱高度20-681.3端梁的結構設計20-681.4梁的整體穩定性20-701.5梁的局部穩定性20-701.6梁的設計布置原則20-721.7舉例20-722梁的計算20-752.1梁彎曲的正應力20-752.2扭矩產生的內力20-752.2.1實心截面或厚壁截面的梁或桿件20-752.2.2閉口薄壁桿件20-752.2.3開口薄壁桿件20-762.2.4受

約束的開口薄壁梁偏心受力的計算20-772.3示例20-772.3.1梁的計算20-772.3.2汽車貨車車架的簡略計算20-802.4連續梁計算用表20-822.5彈性支座上的連續梁20-86第4章 柱和立架的設計與計算20-911柱和立架的形狀20-911.1柱的外形和尺寸參數20-911.2柱的截面形狀20-921.3立柱的外形與影響剛度的因素20-941.3.1起重機龍門架外形20-941.3.2機床立柱及其他20-951.3.3各種立柱類構件的剛度比較20-951.3.4螺釘及外肋條數量對立柱連接處剛度的影響20-962柱的連接及柱和梁的連接20-982.1柱的拼接20-982.2柱

腳的設計與連接20-982.3梁和梁及梁和柱的連接20-1003穩定性計算20-1033.1不作側向穩定性計算的條件20-1033.2軸心受壓穩定性計算20-1033.3結構構件的容許長細比與長細比計算20-1043.4結構件的計算長度20-1053.4.1等截面柱20-1053.4.2變截面受壓構件20-1053.4.3桁架構件的計算長度20-1073.4.4特殊情況20-1083.5偏心受壓構件20-1083.6加強肋板構造尺寸的要求20-1093.7圓柱殼的局部穩定性20-1094柱的位移與計算用表20-110第5章 桁架的設計與計算20-1161靜定梁式平面桁架的分類20-1162桁架

的結構20-1172.1桁架結點20-1172.1.1結點的連接形式20-1172.1.2連接板的厚度和焊縫高度20-1192.1.3桁架結點板強度及焊縫計算20-1192.1.4桁架結點板的穩定性20-1202.2管子桁架20-1202.3幾種桁架的結構形式和參數20-1212.3.1結構形式20-1212.3.2尺寸參數20-1252.4桁架的起拱度20-1253靜定平面桁架的內力分析20-1253.1截面法20-1263.2結點法20-1273.3混合法20-1283.4代替法20-1284桁架的位移計算20-1294.1桁架的位移計算公式20-1294.2幾種桁架的撓度計算公式20-1

304.3舉例20-1345超靜定桁架的計算20-1376空間桁架20-1396.1平面桁架組成的空間桁架的受力分析法20-1396.2圓形容器支承桁架20-140第6章 框架的設計與計算20-1441剛架的結點設計20-1452剛架內力分析方法20-1462.1力法計算剛架20-1472.1.1力法的基本概念20-1472.1.2計算步驟20-1472.1.3簡化計算的處理20-1492.2位移法20-1502.2.1角變位移方程20-1502.2.2應用基本體系及典型方程計算剛架的步驟20-1512.2.3應用結點及截面平衡方程計算剛架的步驟20-1522.3簡化計算舉例20-1533框架

的位移20-1543.1位移的計算公式20-1543.1.1由載荷作用產生的位移20-1543.1.2由溫度改變所引起的位移20-1553.1.3由支座移動所引起的位移20-1563.2圖乘公式20-1563.3空腹框架的計算公式20-1594等截面剛架內力計算公式20-1604.1等截面單跨剛架計算公式20-1604.2均布載荷等截面等跨排架計算公式20-168第7章 其他形式的機架20-1701整體式機架20-1701.1概述20-1701.2有加強肋的整體式機架的肋板布置20-1711.3布肋形式對剛度影響20-1721.4肋板的剛度計算20-1732箱形機架20-1762.1箱體結構參

數的選擇20-1762.1.1壁厚的選擇20-1762.1.2加強肋20-1772.1.3孔和凸台20-1772.1.4箱體的熱處理20-1782.2壁板的布肋形式20-1782.3箱體剛度20-1792.3.1箱體剛度的計算20-1792.3.2箱體剛度的影響因素20-1792.4齒輪箱箱體剛度計算舉例20-1832.4.1齒輪箱箱體的計算20-1832.4.2車床主軸箱剛度計算舉例20-1862.4.3齒輪箱的計算機輔助設計(CAD)和實驗20-1873軋鋼機類機架設計與計算方法20-1873.1軋鋼機機架形式與結構20-1873.2短應力線軋機20-1893.3閉式機架強度與變形的計算2

0-1903.3.1計算原理20-1903.3.2計算結果舉例20-1923.3.3機架內的應力與許用應力20-1933.3.4閉口式機架的變形(延伸)計算20-1943.4開式機架的計算20-1953.5預應力軋機的計算20-1964桅桿纜繩結構的機架20-1975柔性機架20-1985.1鋼絲繩機架20-1985.1.1概述20-1985.1.2輸送機鋼絲繩機架的靜力計算20-1985.1.3鋼絲繩的拉力20-1995.1.4鋼絲繩的預張力20-1995.1.5鋼絲繩鞍座尺寸20-1995.2濃密機機座柔性底板(托盤)的設計20-200參考文獻20-203 自1969年

第一版出版發行以來,已經修訂了五次,累計銷售量130萬套,成為新中國成立以來,在國內影響力強、銷售量大的機械設計工具書。作為國家級的重點科技圖書,《機械設計手冊》多次獲得國家和省部級獎勵。其中,1978年獲全國科學大會科技成果獎,1983年獲化工部優秀科技圖書獎,1995年獲全國優秀科技圖書二等獎,1999年獲全國化工科技進步二等獎,2002年獲石油和化學工業優秀科技圖書一等獎,2003年獲中國石油和化學工業科技進步二等獎。1986~2015年,多次被評為全國優秀暢銷書。與時俱進、開拓創新,實現實用性、可靠性和創新性的最佳結合,協助廣大機械設計人員開發出更好更新的產品,適應市場和生產需要,提高

市場競爭力和國際競爭力,這是《機械設計手冊》一貫堅持、不懈努力的最高宗旨。《機械設計手冊》(以下簡稱《手冊》)第五版出版發行至今已有8年的時間,在這期間,我們進行了廣泛的調查研究,多次邀請機械方面的專家、學者座談,傾聽他們對第六版修訂的建議,並深入設計院所、工廠和礦山的第一線,向廣大設計工作者了解《手冊》的應用情況和意見,及時發現、收集生產實踐中出現的新經驗和新問題,多方位、多渠道跟蹤、收集國內外涌現出來的新技術、新產品,改進和豐富《手冊》的內容,使《手冊》更具鮮活力,以最大限度地提高廣大機械設計人員自主創新的能力,適應建設創新型國家的需要。

汽車引擎潤滑油性能測試

為了解決齒輪油黏度指數的問題,作者蔡東烜 這樣論述:

本研究主要是探討將齒輪油加入引擎內否可以達到與機油相同的潤滑效果,實驗測試內容為汽車引擎內加入齒輪油,之後進行實車路跑測試,且每一萬公里時進行引擎潤滑油性能測試,了解潤滑油性能狀況,期望可減少汽車機油使用,進而達到環保省能的效果。因此,為觀察汽車引擎潤滑油性能狀況,在長途行駛狀態下,不更換引擎機油(僅在水位不足時添加),於每行駛一萬公里時進行引擎潤滑油取樣檢驗,並分析潤滑油性能情況,了解長距離行駛狀態下,僅進行潤滑油添加的行車情況及平均油耗,最後並於達到行駛十萬公里時,分析汽缸磨耗進行引擎細部拆解、清洗、零件磨耗之量測記錄與觀察。實驗結果顯示:一、油耗分析表顯示,實驗期間整體平均油耗為11.

5km/L。本實驗測試油品為齒輪油級別為80W/90黏度係數類似機油15W/40。二、引擎內油汙、雜質過多,已造成部分機件磨耗。例如機油濾清器不良、機油氧化、軸承波司損傷、機油添加劑衰退、造成活塞油環咬死。三、油品黏度太高,潤滑效果不佳。齒輪油未能短時間被運送至零組件,因此會加大啟動時所受磨損,低溫起動將變得困難,清洗作用及冷卻散熱作用變差,功率損失導致燃油消耗增大。四、實驗車測試結果齒輪油當成潤滑使用是可行的,且宜定期或定里程檢查更換,建議一般中古汽車車主應可於每1-2萬公里之前後進行機油更換,不致影響及引擎組件。