3/8螺絲mm的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

另外網站統一英制螺紋規格 - 米計算meCalculator也說明:ANSI / ASME B1.1 統一英制螺紋系列 · UNC · UNF · UNEF · 4 UN · 6 UN · 8 UN · 12 UN · 16 UN

國立勤益科技大學 工業工程與管理系 洪永祥所指導 楊志文的 應用 PDCA 管理循環優化熱冷卻水管路作業研究-以P公司為例 (2021),提出3/8螺絲mm關鍵因素是什麼,來自於多矽晶、太陽能、半導體、PDCA、QC七大手法。

而第二篇論文國立中央大學 機械工程學系 蔡錫錚所指導 傅林立的 大型薄壁四點接觸旋轉軸承之結構動靜態分析 (2021),提出因為有 大型旋轉齒輪軸承、四點接觸軸承、薄壁、Marc-Adams協同模擬的重點而找出了 3/8螺絲mm的解答。

最後網站U4十字螺絲3/16 X 3/8 〞白鐵皿頭螺絲(10支價7元)尖尾攻牙 ...則補充:3/16 " 十字螺絲系列- U4. 材質:不鏽鋼(白鐵皿頭) 規格:3/16 X 3/8 ". 尺寸約:4.7 mm X 9.5 mm. 單支售價:0.7 元/ 支,基本數量:10 支.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了3/8螺絲mm,大家也想知道這些:

應用 PDCA 管理循環優化熱冷卻水管路作業研究-以P公司為例

為了解決3/8螺絲mm的問題,作者楊志文 這樣論述:

各行各業針對生產製程應用PDCA持續不斷進行製程改善優化,促使品質、成本、作業時間、人員安全等等各項指標達公司的需求,並創造解決問題的能力提升自我競爭力。本個案研究公司是專業多矽晶半導體廠,多矽晶是太陽能電池及電子半導體產業的主要原料。近年來,由於疫情因素改變網路應用、人工智慧AI及車用晶片需求大增,故使相關半導體晶圓片廠商供不應求。藉此,維持上游多矽晶原材料生產產能及品質已是重要課題。而生產多矽晶的高溫反應爐具設備作業必須透過水或空氣來降溫或散熱,避免設備因高溫造成設備爆炸、損壞、磨耗等等影響,並危害人員安全,若因設備、人員造成公司的損失是得不償失,為提高人員效率、安全性、降低職業危害。因

此,本研究透過製程改善手法針對生產多矽晶半導體廠熱冷卻水設備之作業方式進行分析與改善。首先透過 PDCA 手法診斷熱冷卻水設備之作業問題,將製程作業方式調整到理想及符合公司需求的生產模式。採用 QC七大手法,藉由此收集相關問題、數據、作業手法,分析相關原因,執行歸類分析一一排除改善,將提供最佳化操作或作業手法,使員工可在一個安全、簡易、快速工作環境中,完成排水及拆卸、安裝熱冷卻水管系統整體作業。最後透過作業員的作業時間、方式的回饋,證實本研究優化改善方案可提升效能。藉由本研究改善手法結果,可提供未來擴廠設備規劃應用參考依據,提升設備生產效能及人員作業效率。

大型薄壁四點接觸旋轉軸承之結構動靜態分析

為了解決3/8螺絲mm的問題,作者傅林立 這樣論述:

大型旋轉軸承多為直徑一米以上之軸承,因其能承受高負載低轉速的特性,常與齒輪做結合以做為驅動機構之功能,其中四點接觸旋轉軸承,因可同時承受軸向力、徑向力及傾覆力矩,且為滾珠設計,使啟動力矩較小,大多應用在風力發電機、挖掘機、吊車轉塔或軍用砲塔座等之旋轉機構。旋轉軸承最容易破壞的地方之一為滾珠,因此研究上大多以滾珠受力情形為主;但大型旋轉齒輪軸承為了要輕量化,多會將軸承環部之壁厚減少,如此雖可減輕重量但也增加了環部破壞的風險。因此本篇論文分析軸承在受到靜態及動態負載後,對壁厚的影響為何。另一方面,除了一般的負載,螺絲的預力也會影響到軸承的應變情況,在分析上也納入考量。本論文針對某具有轉塔之車輛的

旋轉齒輪軸承為分析目標。整體結構係由軸承內環、外環、與內環連接之轉塔,以及與外環連接之車體組成,軸承環部與轉塔及車體接合方式為螺絲,總共178顆滾珠及36顆螺絲。在靜態負載分析方面使用MSC.Marc分析軸承之結構強度。有限元素建模中,將滾珠以承受壓力之彈簧代替,其剛度曲線由KISSsoft根據ISO/TS16281計算而得,螺絲則用樑元素代替;如此可大幅減少分析時間,並且不影響分析結果。而在一般的分析上,不論是利用受載接觸分析模型或是使用有限元素分析FEM,均是以靜態負載為主,但旋轉軸承受到動態負載作用影響卻是不可忽略。因此本論文除了分析靜態負載以外,也使用MSC.CoSim結合MSC.Ad

ams的動態負載分析與MSC.Marc的有限元素分析,以符合真實的情況模擬滾珠與結構在動態下之受力情形。旋轉軸承在承受動態負載條件共分成平地及坡地狀態承受動態衝擊負載,以及在平地運輸時,受到地面起伏振動等兩種情況。論文中以協同模擬分析旋轉軸承在這些情況下,確認滾珠負載是否在安全範圍內,軸承環部結構強度是否可承受動態衝擊以及螺栓在鎖緊狀態下負載變化狀況。另一方面,由與旋轉軸承連接的介面板在加工時仍具有一定程度的平面度誤差,軸承環部在螺絲鎖緊下會產生變形,因此必須要能確保在最差的誤差情況下,軸承環部、滾珠與滾道可符合強度要求,以及軸承不會因軸承環部變形使運轉不順暢。在靜態分析結果中,當軸承僅受螺絲

預力,會使軸承變形造成與螺絲接近之滾珠產生更多的負載;平地與坡地受到負載時,徑向力與偏心重量造成負載由一號滾珠漸增到89號滾珠;薄壁應力及螺絲受力受螺絲預力影響較大,負載條件影響較小;軸承間隙會使滾珠負載分配區間變小;當介面板平面度在規範最大值下,對滾珠造成的負載約在5400 N,仍在安全範圍內,造成之啟動力矩約為900 N-m,為介面板無變形情況下之兩倍。而在動態分析結果方面,軸承受到衝擊負載時,因為衝擊方向朝向一號滾珠及軸承重心偏向89號滾珠影響,因此負載會由1號滾珠漸增到89號滾珠,而滾珠負載值最大時間點在平地衝擊時,會與衝擊最大值時間點一致,坡地衝擊則是在衝擊最大時間點過後,因傾覆力矩

在衝擊過後造成更大的負載;平地運輸振動則是在接觸對I上分佈差不多,接觸對II則因為傾覆力矩在89號滾珠會有最大值,時間點上滾珠負載最大值會與振動最大值的時間點一致,從負載對應到的應力值來看,並不會對滾珠及軸承造成破壞。從結果也可以看出螺絲對軸承的影響,軸承在螺絲鎖固點附近的位置會因預力變形關係而有較大的應力,進而影響到滾珠及環部薄壁動態受力。而螺絲本身因預力關係,在動態負載作用下,負載並無太大的變化