3號充電鋰電池的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

3號充電鋰電池的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦左卷健男,元素学たん寫的 3小時「元素週期表」速成班! 和涌井良幸,涌井貞美的 生活科學大百科都 可以從中找到所需的評價。

另外網站《大陸產業》寧德時代攜三一重工福建省換電重卡專案啟動也說明:據上證報消息,此次投放的電動幹線重卡及渣土車均採用寧德時代大容量磷酸鐵鋰電池,不僅可以實現零排放、零污染,同時滿足大功率快充,實現3-5分鐘內 ...

這兩本書分別來自楓書坊 和楓葉社文化所出版 。

國立陽明交通大學 材料科學與工程學系所 鄒年棣所指導 許家維的 基於深度學習進行電池性質預測 (2021),提出3號充電鋰電池關鍵因素是什麼,來自於鋰離子電池、老化因子、剩餘壽命、深度學習、特徵篩選、時序資料處理。

而第二篇論文明志科技大學 化學工程系碩士班 楊純誠、施正元所指導 林冠吟的 添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料 (2021),提出因為有 磷酸鋰鐵、溶膠凝膠法、多孔氧化石墨烯、氣相生長碳纖維、鋰離子擴散係數、電子導電度、原位X-ray繞射光譜儀、原位顯微拉曼光譜儀的重點而找出了 3號充電鋰電池的解答。

最後網站四號與方塊電池也有快速充電囉!可重複使用的OXOPO 快充 ...則補充:OXOPO XS 系列「AA 三號快充鋰電池」與「AAA 四號快充鋰電池」可做單獨購買,一組四顆官方售價分別為NT$920 元以及NT$1090 元,另外也可選擇搭配「USB 四 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了3號充電鋰電池,大家也想知道這些:

3小時「元素週期表」速成班!

為了解決3號充電鋰電池的問題,作者左卷健男,元素学たん 這樣論述:

~最擅長趣味科普的老師──左卷健男又一新作~ 拋開週期表排序,一起探索日常中近在身邊的化學元素!     無論手機還是我們居住的地球,整個宇宙都是由元素所構成!   你現在是怎麼看到這個網頁呢?   可能是透過智慧型手機的發光螢幕,也可能是使用桌電或筆電來閱讀。     再試著回想,你今天午餐吃了什麼?現在穿著什麼衣服?   早晨出門時的空氣聞起來如何呢?   所有這些問題的答案,其實都隱藏著一個共通之處,那就是──它們都是由元素所組成!   可以說,元素構成了你我日常的每一天。     本書正是扮演一個「濾鏡」的角色,帶領各位逡巡於宇宙與地球,摸索光和顏色,返回歷史的事件點,發現構成物質

生活的基本單位──元素,原來如此奧妙又變化萬千!     據說,地球上有超過1億種被命名的物質。   構成這為數龐大物質的元素,目前已知的只有118種;   然而當中大約僅有90多種,是本來就存在於自然界的天然元素。   元素如何構成物質?人類祖先如何發現並利用這些物質?現代人又是如何發掘元素使生活更便利?   書中的開章,會先解說元素週期表與元素的基本知識,奠定基礎。     從第2章到第8章,將劃分成【宇宙與地球】、【人類史】、【事故與意外】、【廚房餐桌】、【光與顏色】、【舒適生活】、【先進科技】七個部分,介紹各種扮演要角的元素。     接下來,就讓我們一起徜徉在不可思議的元素世界,領略

和宇宙萬物的連結吧!   本書特色     ◎從廚房餐桌到外太空,跟著科普作家一起探索,發現你我周遭原來由各式各樣的元素組成!   ◎內容編排打破元素週期表的序列,依7個主題分門別類,更能連結元素與元素、元素與日常生活的關係。   ◎科技文明的進程、扭轉戰爭的武器、意外事故醞釀殺傷力的元凶,讓我們回顧這些推動人類歷史的元素。

3號充電鋰電池進入發燒排行的影片

本集節目由「台灣智慧移動產業協會」獨家贊助播出。

「台灣智慧移動產業協會」是由一群關心智慧運輸與能源應用各界專業人士組成,致力將友好環境及自然共生的理念導入智慧交通中,推動智能、永續的美好生活願景。

現在就到協會官網和粉專,了解更多豐富的電動車資訊,以及氣候變遷的討論吧!
👉 官方網站:https://smat.org.tw/
👉 官方粉專:https://www.facebook.com/smartmobilitytaiwan/

#電動車 #電動機車 #氣候變遷
--
✔︎ 成為七七會員(幫助我們繼續日更,並享有會員專屬福利):http://bit.ly/shasha77_member
✔︎ 體驗志祺七七文章版:https://blog.simpleinfo.cc/shasha77
✔︎ 購買黃臭泥周邊商品: https://reurl.cc/Ezkbma 💛
✔︎ 訂閱志祺七七頻道: http://bit.ly/shasha77_subscribe
✔︎ 追蹤志祺IG :https://www.instagram.com/shasha77.daily
✔︎ 來看志祺七七粉專 :http://bit.ly/shasha77_fb
✔︎ 如果不便加入會員,也可從這裡贊助我們:https://bit.ly/support-shasha77
(請記得在贊助頁面留下您的email,以便我們寄送發票。若遇到金流問題,麻煩請聯繫:[email protected]

各節重點:
00:00 開頭
01:15 世界各國都在用電動車嗎?
02:48 目前台灣的狀態
04:22 討論1:改用電動車,真的能減少空污?
05:28 討論2:最新燃油機車改善空污的效果,比電動車更好?
06:06 討論3:改用電動車,碳排放量會增加嗎?
07:16 討論4:電動車的生產和廢棄,碳排放量多嗎?
08:46 討論5:如果全部換成電動汽機車,電還會夠用嗎?
10:07 我們的觀點
11:30 問題
11:30 結尾

【 製作團隊 】

|客戶/專案經理:鯉鼬
|企劃:宇軒
|腳本:宇軒
|編輯:土龍
|剪輯後製:Pookie
|剪輯助理:珊珊
|演出:志祺

——

【 本集參考資料 】

→COP26:格拉斯哥氣候峰會的特點、意義和預期:https://bbc.in/3l1pEnF
→《全球電動車展望2020》-IEA:https://bit.ly/3kZULjk
→碳關稅將上路、零碳新賽局開跑!台灣為何該擔憂國際競爭力?:https://bit.ly/3yTn3kI
→Net Zero by 2050-50- A Roadmap for the Global Energy Sector - IEA:https://bit.ly/2WSNiKL
→除了日本...這些國家也規劃禁售燃油車:https://bit.ly/38PFI61
→IHS Markit 全年汽車銷量數據:https://bit.ly/3l0eNdp
→《2021汽車產業趨勢與展望》-勤業眾信:https://bit.ly/3zJ671n
→【圖解】電動車靠這4大關鍵崛起,10年後將突破3千萬輛!一張圖看懂未來趨勢:https://bit.ly/3DOop3D
→未來只要8萬元就能買到電動車!分析師大膽預言讓燃油車挫咧等:https://bit.ly/38Ljfr4
→預言電動車價格戰將至 日本電產CEO:2030年車價將剩1/5:https://bit.ly/3h8Bfjs
【台灣現狀】
→蔡總統宣示淨零轉型之後,運具電動化如何加快腳步? - 報導者:https://bit.ly/3n6RQYM
→「2035年禁售燃油機車」政策 確定轉彎:https://news.pts.org.tw/article/426046
→拚減碳 8科技巨頭組氣候聯盟-環境資訊中心:https://e-info.org.tw/node/230698
→賴清德:面對氣候災難問題 台灣沒有豁免權-中央社:https://bit.ly/2YprDu9
→汽機車統計數據 - 交通部統計查詢網:https://bit.ly/3kQr4RC
→汽機車數量統計 - 交通部公路總局 統計資料:https://bit.ly/3n0UpM6
【 討論1 】
→環保署 - 全國空汙排放量清冊系統﹝TEDS 11.0版﹞排放量統計數據:https://bit.ly/3h8cswa
→Analysis of air quality and health co-benefits regarding electric vehicle promotion coupled with power plant emissions:https://bit.ly/3n3BnVd
【 討論2 】
→車輛電動化政策倒退走?破解「油電平權」假議題:https://bit.ly/38Mp5IF
→七期環保是什麼? 台灣的機車環保法規演進分析:https://bit.ly/3zUBiXO
→年度排放量推估統計:https://bit.ly/3jL6tPm
【 討論3 】
→US energy 電廠+電動車 數據:https://bit.ly/3zOMbdy
→US energy 燃油車 數據:https://bit.ly/3n63tPV
【 討論4 】
→2020.03月 Nature Sustainability 的研究:https://go.nature.com/3n2rgjD
→Mobility and the Energy Transition: A Life Cycle Assessment of Swiss Passenger Transport →Technologies including Developments until 2050:https://doi.org/10.3929/ethz-b-000276298
→電動車廢舊電池回收 中國與歐洲市場的現狀和選項-BBC:https://bbc.in/2WXLjVa
【 討論5 】
→電動車充電 台電將推專用時間電價-自由財經:https://bit.ly/3jIdj8l
→機車電動化 台灣會缺電嗎?-工商時報:https://bit.ly/3kW92xp
→台灣邁向電動車時代 配電空間與用電量都成挑戰 - 公視新聞:https://bit.ly/3thJIWw
→每部電動機車每公里耗電0.024度 來源:行政院環境保護署審查開發行為溫室氣體排放量增量抵換處理原則:https://bit.ly/2WQbzl1
→台灣邁向電動車時代 配電空間與用電量都成挑戰-公視新聞網:https://bit.ly/3yNY1Dx
→【2040電動車化】供電受影響? 台電估:全部電動車化也不怕 - 環境資訊中心:https://bit.ly/3zQg7ps
→在「對的時間」充電有利多 台電靠這四招搞定 - 環境資訊中心:https://e-info.org.tw/node/209502

【 延伸閱讀 】

→百萬噸鋰電池即將報廢,電池回收產業面臨兩大難題:https://bit.ly/3jMBHWz
→A DEAD BATTERY DILEMMA:https://bit.ly/3DP9Z3o
→【電車世代】電池回收大哉問:到底退役電池會去哪?又會被怎麼處理? - INSIDE:https://bit.ly/3jMNOmh



\每週7天,每天7點,每次7分鐘,和我們一起了解更多有趣的生活議題吧!/

🥁七七仔們如果想寄東西關懷七七團隊與志祺,傳送門如下:
106台北市大安區羅斯福路二段111號8樓

🟢如有引用本頻道影片與相關品牌識別素材,請遵循此規範:http://bit.ly/shasha77_authorization
🟡如有業務需求,請洽:[email protected]
🔴如果影片內容有誤,歡迎來信勘誤:[email protected]

基於深度學習進行電池性質預測

為了解決3號充電鋰電池的問題,作者許家維 這樣論述:

鋰離子電池作為常見的儲能設備,廣泛應用於終端設備上且藉由電池管理系統進行監控確保電池老化程度仍可應付工作所需。然而電池在使用初期並無明顯老化特性的反應,因此對於使用過的電池無法很好評估預期壽命以至於材料的浪費或設備的異常(Early failure)。本研究利用時序資料連續性進行資料擴增更同時對神經網路潛空間進行正則化,並透過包含篩選器與預測器的神經網路架構在僅有少量循環的量測數據下,預測電池產品壽命、剩餘使用壽命、充電所需時間、放電時的電壓電量變化曲線等。其中,僅測量一個充放電完整循環的數據,就能提供僅有57週期方均根誤差的產品壽命預測。本研究亦同時引入注意力機制於此框架中達成僅使用若干個

循環的測量資料便可預測整個電池的產品週期放電電量、放電功耗等特性。

生活科學大百科

為了解決3號充電鋰電池的問題,作者涌井良幸,涌井貞美 這樣論述:

從高科技、動植物、人體機制、天候氣象到社會體系 揭開73個隱藏在便利生活背後,大人小孩都「驚奇連連」的科學大哉問!   我們如今所處的21世紀,正逢「科學好有趣」的時代。   即便不是理科宅或理組出身的人,想必至少也看過一部科幻題材,或是加入一點科學要素提味的電影吧?   ‧融入時空旅行的概念,描述男女主角之間一段錯過的愛情   ‧為了竊取重要機密,主人翁一路闖關,突破指紋、虹膜掃描與臉部辨識的生物辨識系統   ‧超級英雄從動物身上獲得特殊能力,能做到射出蜘蛛線快速移動,或是把身體縮小如螞蟻   即便是以日常生活為題材的影劇動畫品,當中習以為常的各種現象,其實也都偷偷藏著讓你意想不到的有趣

機制。   ‧夏季煙火大會上,可愛的女孩穿著浴衣,沐浴在五光四射的燦爛夜幕下   ‧每當進入梅雨季,捲髮就會像爆炸一樣蓬得更厲害,乃自然捲人士最痛恨的季節   ‧透過手機傳來的聲音,聽起來和本人的聲音似乎有哪裡不一樣?   本書正是日本知名作家組合、專攻數學與統計學的涌井良幸,以及擅長科普題材撰寫的貞美,由兄弟二人合力寫作,廣泛蒐羅73個跨領域的科學知識,精心挑選近百來來對人類生活影響深遠、最具代表性的新興科技,當然更少不了人類終於解謎的自然界不思議現象。   【科技不思議】   ‧我們至少需要3顆人造衛星定位,那麼剩下的第4顆的用途是什麼?   ‧網路瀏覽器邊欄跳出的廣告,為什麼看起來都

「似曾相識」?   【動植物不思議】   ‧無籽檸檬、無籽葡萄……這些水果難道是經過「基因改造」?   ‧我們在醫院打針會痛,但被蚊子用針吸血時卻多半沒感覺。這是因為蚊子的針很細嗎?   【社會機制不思議】   ‧你有過一條路上連續被紅燈擋下的經驗嗎?這是設計不良還是內藏陰謀……?   ‧諾貝爾獎每年頒發一大筆錢,為什麼基金會卻不會破產?   【生活用品不思議】   ‧為什麼衛生紙可以直接丟馬桶沖水,面紙卻不行?   ‧看牙科照X光時,為什麼可以穿透肌肉與血管,只照出牙齒和上下顎的骨頭?   身處在如今「科學真有趣」的時代,期待本書能成為各位的觀景窗,一同探究生活周遭奧妙的自然現象與科

學知識,就此拋開「理科好難!」的敬畏之心。 本書特色   ◎日本科普作家兄弟組聯手推出,從科學觀點出發,帶領你深入探索世界的不可思議。   ◎綜合「高科技」、「動植物」、「社會」、「人體」、「生活」、「氣象」與「電氣」七大領域,分別列舉73個科學主題,是上班族的休閒科普讀本,也是學生更好讀懂課本的補充教材。   ◎全書採圖文對頁設計,一個主題搭配兩頁全圖解,藉由圖像記憶法,大量速讀科普知識。   作者簡介 涌井良幸   1950年於東京出生,為貞美的哥哥。東京教育大學(現筑波大學)數學系畢業後,任教於千葉縣立高級中學。辭去教職後,現在專注於寫作活動。 涌井貞美   1952

年於東京出生,為良幸的弟弟。東京大學理學系研究科碩士課程修畢後,進入富士通公司任職,之後擔任神奈川縣立高級中學教師,接著獨立成為科學作家,現在的活動重心是為書籍和雜誌撰稿。   合著書籍包含《誰都看得懂的統計學超圖解》(楓葉社文化)、《深度學習的數學:用數學開啟深度學習的大門》(博碩)、《圖解小文具大科學:辦公室的高科技》(十力文化)、《情報致富的EXCEL統計學:上班有錢途,下班賺更多,大數據時代早一步財富自由的商業武器》(方言文化)等多本著作。 譯者簡介 陳聖怡   享受有日文的生活,曾留學東京,熱愛筆譯。   譯有《哲學解剖圖鑑》、《哲學用語事典》、《心理學使用說明書》、《3小

時「男女心理學」速成班!》、《超譯戰國武將決策術》,以及多種歷史、旅遊、生活實用書。   ◎前言   ▍Part1 「高科技」的驚奇原理 ‧生物辨識技術  只要輕輕一掃描,就能完全解密個人身分! ‧GPS  只需四顆人造衛星,就能以極小誤差鎖定位置! ‧行為定向廣告  網頁跳出的廣告,都「剛剛好」符合你的喜好? ‧地震即時警報  智慧型手機的情報整合,早一步接收「地震」警報 ‧無線充電  兩個線圈放在一起,就能神奇地產生電流? ‧近距離無線通訊  Wi-Fi、藍牙與NFC,三種無線裝置究竟差異何在? ‧鋰離子電池  電池百百款,如何達到成功縮小又輕量? ‧MVNO  留學打

工都適用,日本廉價SIM卡的上市機制 ‧無現金支付  不必掏錢就能立刻付款!無需現金的支付系統 ‧QR碼  以縱橫雙向記錄資訊,二維條碼的真實面目 ‧汽車防撞系統  千萬不可大意!自動煞車可不是「防碰撞」 ❖Column 完全靜止不動?同步運行的地球衛星   ▍Part2 「動植物」的驚奇原理 ‧蜘蛛的網  使用縱橫絲線,網子更強韌的生物超科技 ‧蚊子的針  刺下去也不會痛,蚊子的「針」究竟有多細? ‧鰻魚的生態  餐桌上的鰻魚99%是養殖!日本鰻魚究竟如何養成? ‧魚的身體  海水魚和淡水魚,生理機制大不相同 ‧螞蟻的社會  不工作的懶惰螞蟻,反而維繫螞蟻族群的存續!? ‧鳥的飛翔  兩種羽

毛共存,鳥的翅膀如何激發飛行器發明? ‧無籽水果  染色體只要以奇數組合,種子就會消失了!? ‧植物的生存策略  一旦遭害蟲啃噬,就散發氣味召喚強力幫手! ‧櫻花盛開  染井吉野櫻同時綻放!賞櫻人的未解之謎 ‧獨角仙的角  雄壯威武的獨角仙,大角的生長機制終於解謎! ❖Column 生活愈北方的熊,體型就會愈大?   ▍Part3 「社會全貌」的驚奇原理 ‧郵遞區號  日本電話號碼由北到南排序,「郵遞區號」則採亂數? ‧平均值  新聞常見的「平均存款」和「平均所得」的表現方式 ‧交通號誌燈  老是被紅燈擋住,其實是號誌燈的刻意設計? ‧廣告後馬上回來  沒有完結反而更在意?廣告宣傳的心理暗示

‧隧道工程  基礎設施不可或缺,卻無人知曉的「挖洞」體系 ‧壽險  給付巨額保險金,壽險公司依然屹立不搖的祕密? ‧諾貝爾獎  獎金持續頒發一百多年,基金永不枯竭的真相 ‧塞車  都是駕駛員的錯?容易大堵塞的高速公路特徵 ‧電視節目收視率  全國範圍的收視率調查,真的是一戶戶採計嗎? ‧案件偵辦  逮捕→令狀→函送檢方,警察的辦案SOP如何執行? ‧田徑計測  照片就能決定勝敗?精準計時的終點攝影系統 ‧貨幣升值與貶值  依供需原則變動,全球貨幣交易的基本機制 ‧免費增值和訂閱  免費遊戲和影片看到飽,廠商真的能賺到錢嗎? ‧價格標示  超市和量販店的促銷手法,這樣標價就能勾住顧客的心! ❖C

olumn 政府支持率的高低變化,難道都是媒體操作?   ▍Part4 「人體」的驚奇原理 ‧發燒  感冒時身體散發的熱度,其實不是「壞東西」? ‧眨眼  不只是普通的生理反應,眼睛「傳達資訊」的驚奇機制 ‧酒醉  酒精是如何循環全身,直到麻痺腦門? ‧第二個胃  甜點是另一個胃!真的存在第二個胃嗎? ‧壽命  逆轉老化的壽命關鍵,「端粒」的真面目 ‧眼睛的焦點  近視、遠視與亂視,靈魂之窗的種種障礙 ‧肌肉痠痛  重訓健身過後,肌肉為什麼都會痠痛不已? ‧雞皮疙瘩  吹風就起雞皮疙瘩,是人類殘存的「動物本能」? ‧睡眠  帶來睡意和幫助甦醒,兩種荷爾蒙的交互作用 ‧頭髮  直髮和卷髮,是由細

胞的彎曲程度決定? ❖Column 生活各種省力設計,都是為右撇子量身打造?   ▍Part5 「生活周遭」的驚奇原理 ‧煙火  跨年不可少的繽紛化學秀,煙火的元素發色原理 ‧年糕和起司  可以拉長的年糕,能夠用米飯取代糯米製作嗎? ‧濃縮果汁  100%原汁和100%濃縮果汁,差別究竟在哪裡? ‧除臭劑  消除惱人的氣味,坊間常見的四種「除臭」方法? ‧除溼劑、除溼機  除溼就靠小小的白色顆粒?拋棄式除溼盒內部大公開 ‧保溫瓶  保溫保冷兩相宜,關鍵是比擬外太空的「真空」構造! ‧保鮮膜  封碗盤卻不沾手,保鮮膜具備選擇性「黏著力」? ‧手術縫合線  傷口癒合也不需要拆線?可被身體吸收的縫合

線 ‧面紙和廁所衛生紙  「可溶」與「不可溶」,關鍵差異是由纖維所決定! ‧汽油  汽機車的專用燃料,汽油到底是怎麼製造的? ‧內用藥  為什麼人類生病需要吃藥,動物受傷卻能自然痊癒? ‧X光  層層穿透內臟與肌肉,只照出「骨骼」的神奇射線 ‧立體停車場  由汽車層層疊成的大樓,機械式停車場的結構 ❖Column 日本的「年號」是依循什麼規則決定?   ▍Part6 「氣象」的驚奇原理 ‧太陽  宇宙層級的再生能源,孕育龐大能量的核融合 ‧雷  冬天的閃電會劈向天空!雷電是如何煉成的? ‧颱風  侵襲日本的颱風,每年總是走固定的路線? ‧晚霞  傍晚晴朗的天空,為什麼會從藍天轉為紅色? ‧潮汐

 滿月會帶來大漲潮?「滿潮」和「乾潮」的循環 ‧雲的形成  是氣態還是液態?乘著上升氣流飄浮空中的雲 ‧梅雨  兩種氣團相遇的產物,春夏之交陰雨不斷的真相 ‧天氣預報  「降雨機率」如何看?簡單學習天氣預報的術語 ❖Column 雨天才出現的幽靈氣息?潮溼泥土味的真面目   ▍Part7 「電氣相關」的驚奇原理 ‧家庭用電  從五十萬到一百伏特!超高壓轉成家用電流的過程 ‧手機的聲音  手機聽筒傳來的聲音,並不是「真正的聲音」? ‧電風扇和循環扇  送風機制大不同!使房間快速涼爽的智慧家電 ‧LED  由兩種半導體組成,不會發熱的冷光源燈泡 ‧新幹線的煞車  減速的同時也能「發電」?由新幹線

引領的電力再生技術 ‧加熱菸  不必使用打火機,充電就能吞雲吐霧的新型香菸 ‧無線電波  手機通話不間斷,時時刻刻串聯你我的「切換」機制   ◎主要參考文獻 ◎主要參考網站 前言   我們日常周遭所看見、所接觸的事物,其實都各自具備了「驚奇的原理」。但是,我們對此卻渾然不知,或者說是在幾乎不曾發現的茫然無知狀態下,持續日復一日地過著每一天。   比方說,我們都不會特別注意萬里無雲的晴朗藍天,然而這抹「藍」卻是其來有自,而且是直到近幾年,科學家才終於察覺了它的「原理」。   再另外舉一個例子,當昆蟲在葉子上緩緩蠕動時,我們也會覺得這是再普通不過的現象而不以為意,根本不會懷疑「明明蟲子會

吃葉子,為什麼卻從來不把葉子吃光光呢?」即使如此,這場葉子與昆蟲的壯烈戰爭依舊每天上演。當然,其中的「原理」,也是直到二十一世紀以後才終於釐清。   除此之外,日式料理餐廳的菜單,經常能見到「松」、「竹」、「梅」或是「特上」、「上」、「並」的等級差別,平常也不會令人感到疑惑。但是,這種三段式分類卻隱藏著足以撩撥人類心理的絕妙「原理」。研究人的這種幽微心理機制的論文,還是直到最近才榮獲了諾貝爾經濟學獎。   我們所處的這個現代,簡而言之,正逢「科學好有趣」的時代。就像剛才提及,因為我們生活周遭事物內藏的「原理」,終於逐漸真相大白。   愈是近在眼前的事物,就愈難理解的時代已經終結。本書從高

科技、動植物、社會各個層面、人體,再到電氣工程相關,搭配圖解簡單說明我們身邊隨處可見的「驚奇原理」。在現在這個「科學好有趣」的時代,如果各位能夠透過本書,窺見身邊精妙的科學理論與相關知識,就是身為著者的我最意外的驚喜了。  

添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料

為了解決3號充電鋰電池的問題,作者林冠吟 這樣論述:

目錄明志科技大學碩士學位論文口試委員審定書 i誌謝 ii摘要 iiiAbstract v目錄 viii圖目錄 xi表目錄 xvii第一章 緒論 11.1 前言 11.2 研究動機 2第二章 文獻回顧 42.1 鋰離子二次電池之發展 42.1.1鋰離子二次電池反應機制及熱失控 52.2 陰極材料(Cathode materials) 82.3 陽極材料(Anode) 102.4 隔離膜(Separator) 122.5 電解質(Electrolyte) 142.6 磷酸鋰鐵(LiFePO4)的基本特性 162.7 磷酸鋰鐵陰極材料改質方法 182.7.

1 碳層包覆 182.7.2 添加導電/包覆導電的碳材 212.7.3 縮小粒徑 242.8 磷酸鋰鐵材料之合成方法 262.8.1 微波法(Microwave method) 262.8.2 溶膠凝膠法(Sol-gel method) 282.8.3 水熱法(Hydrothermal method) 312.8.4 噴霧乾燥法(Spray-drying method) 35第三章 實驗方法 393.1 實驗藥品與儀器 393.1.1 實驗儀器與設備 403.2 LFP/C複合陰極材料之製備方法 413.2.1磷酸鋰鐵/碳(LFP/C)製備方法 413.2.2磷酸鋰鐵

/碳/多孔氧化石墨烯(LFP/C/PGO)製備方法 423.2.3磷酸鋰鐵/碳/氣相生長碳纖維(LFP/C/VGCF)製備方法 443.3 LFP/C之陰極複合材料之物性、化性分析 463.3.1磷酸鋰鐵/碳(LFP/C)陰極材料之物化性分析方法 473.3.2磷酸鋰鐵/碳(LFP/C)陰極材料之化學成份分析 563.4 磷酸鋰鐵/碳(LFP/C)陰極材料之電化學性質分析 573.4.1電極片製備 573.4.2鈕扣型鋰離子半電池封裝 593.4.3電池充/放電穩定度測試 603.4.4循環伏安法測試 613.4.5交流阻抗測試 623.4.6恆電流間歇滴定法測試 64

第四章 結果與討論 654.1 磷酸鋰鐵/碳(LFP/C)之材料晶相結構分析 654.1.1原位-晶相結構分析 674.2 磷酸鋰鐵/碳(LiFePO4/C)之表面形態分析 724.2.1 磷酸鋰鐵/碳(LFP/C)之材料化學組成元素分析 764.2.2 磷酸鋰鐵/碳(LFP/C)之顯微結構微分析 794.3 磷酸鋰鐵/碳(LFP/C)之碳層結構分析 844.3.1原位-顯微拉曼光譜分析 864.4 磷酸鋰鐵/碳(LFP/C)之比表面積分析(BET) 884.5磷酸鋰鐵/碳(LFP/C)之粉末電子導電度分析 914.6 磷酸鋰鐵/碳(LFP/C)之殘碳量分析 924.7

磷酸鋰鐵/碳(LFP/C)電化學分析法 934.7.1 磷酸鋰鐵/碳(LFP/C)之低電流速率之充放電分析 934.7.2 磷酸鋰鐵/碳(LFP/C)之高電流速率之充放電分析 994.7.3 磷酸鋰鐵/碳(LFP/C)之長期循換穩定性分析 1044.8 磷酸鋰鐵/碳(LFP /C)循環伏安分析 1184.8.1磷酸鋰鐵/碳(LFP/C)電化學微分曲線分析 1204.9 磷酸鋰鐵/碳(LFP/C)交流阻抗及鋰離子擴散係數分析 1244.9.1磷酸鋰鐵/碳(LFP/C)恆電流間歇滴定法測試 129第五章 結論 135參考文獻 137 圖目錄圖 1、鋰離子二次電池充放電原理示意圖

[12]。 5圖 2、1992年至2020年鋰離子電池的世界市場價值[15]。 6圖 3、鋰離子二次電池熱失控三個階段示意圖[19]。 7圖 4、陰極材料中主要分為三種不同的晶體結構[28]。 9圖 5、鋰離子電池之陽極材料分類圖。 10圖 6、鋰離子電池之陽極材料特性。 11圖 7、各種製造隔離膜的方法示意圖[39]。 12圖 8、磷酸鋰鐵(LiFePO4)與磷酸鐵(FePO4)晶格結構圖[53]。 17圖 9、LiFePO4和LiFePO4/C複合材料的SEM圖。 18圖 10、LiFePO4和LiFePO4/C複合材料的SEM圖。 19圖 11、未塗覆TWEEN 80

的LiFePO4 (a). SEM圖 (b). TEM和HRTEM圖;塗覆了TWEEN 80的LiFePO4 (c). TEM和 (d). HRTEM圖。 20圖 12、LFP–CNT–G組合的網絡結構示意圖[58]。 21圖 13、SEM圖 (a). 原始LFP (b). LFP-CNT複合材料 (c). LFP-G複合材料 (d). LFP-CNT-G複合材料;TEM圖 (e). 原始LFP (f). LFP–CNT複合材料 (g). LFP–G複合材料 (h). LFP–CNT–G複合材料。 22圖 14、(a) VC/LFP及C/LFP的放電曲線圖、(b) VC/LFP及C/LF

P循環比較圖。 22圖 15、VC/LFP和C/LFP的EIS阻抗曲線比較圖。 23圖 16、$VGCF的製造過程示意圖[60]。 23圖 17、LFP/C和LFP/C-Tween分析(a). XRD圖譜,(b). 粒徑分佈,(c).和(d). SEM圖,(e)和(f). TEM圖。 25圖 18、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10C不同電流速率下的充電/放電曲線。 27圖 19、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10 C的各種電流速率下的充電/放電循環性能圖。 27

圖 20、SEM圖(a). HY-LiFePO4 (b). HY-SO-LiFePO4。 29圖 21、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG樣品的SEM和TEM圖。 30圖 22、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG複合材料在不同速率下的充電/放電曲線和循環性能。 30圖 23、LiFePO4/C核-殼複合材料(a). XRD圖, (b). SEM圖, (c). TEM圖, (d). HRTEM圖。 32圖 24、SEM圖(a). 3DG, (b). FP, (c)、(d). FP/3DG, (e). LFP/C,

(f). LFP/3DG /C。 33圖 25、LFP/C和LFP/3DG/C,(a). 0.2C、(b). 1C時的循環性能曲線和庫侖效率。 34圖 26、LFPO/rGO複合材料(a)~(c). SEM圖像,(d)~(f). TEM圖像。 34圖 27、SEM圖(a). Hy-LFP/C (b). Hy-LFP/GO/C (c). SP-LFP/GO/C和(d). SP-LFP/PGO/C。 36圖 28、(a). Hy-LFP/C, (b). SP-LFP/GO/C, (c). SP-LFP/PGO/C複合材料在0.2~10C時的充放電曲線, (d). LFP複合材料的速率能力曲

線圖。 36圖 29、具有不同NC層含量的LiFePO4的SEM圖(a).0 wt. %NC (b).2 wt. %NC (c).5 wt. %NC (d).10 wt. %NC。 37圖 30、HRTEM圖(a).LFP/C, (b).LFP/C/CNT, (c).LFP/C/G, (d).LFP/C/G/CNT。 38圖 31、LiFePO4/C陰極材料之流程示意圖。 45圖 32、LiFePO4/C陰極複合材料的各性質檢測項目之流程圖。 46圖 33、布拉格表面衍射示意圖。 47圖 34、X-ray繞射分析儀(Bruker D2 Phaser)。 48圖 35、原位繞射分析

光譜儀組件。 49圖 36、掃描式電子顯微鏡(Hitachi S-2600H)圖。 50圖 37、高解析穿透式電子顯微鏡(JEOL JEM2100)。 51圖 38、顯微拉曼光譜儀(Confocal micro-Renishaw)。 52圖 39、原位顯為拉曼分析光譜儀組件。 53圖 40、比表面積分析儀。 54圖 41、將錠片夾入自製夾具之示意圖。 55圖 42、元素分析儀(Thermo Flash 2000)。 56圖 43、LiFePO4/C複合陰極材料電極片製備之流程圖。 58圖 44、CR2032鈕扣型半電池封裝示意圖。 59圖 45、佳優(BAT-750B)電池

測試儀。 60圖 46、恆電位電池測試儀(MetrohmAutolab PGST AT302N)圖。 61圖 47、AC交流阻抗測試圖譜(Nyquist plot)示意圖。 62圖 48、BioLogic BCS-805電池測試儀。 64圖 49、添加不同導電碳材之陰極複合材料XRD分析圖譜。 66圖 50、(a) LFP/C、(b) LFP/C/VGCF電極在充放電1次循環下的In-situ XRD分析圖。 69圖 51、LFP/C電極在不同範圍之In-situ XRD分析圖。 70圖 52、LFP/C/VGCF電極在不同範圍之In-situ XRD分析圖。 70圖 53、在

In-situ XRD充放電過程中LFP相的比例圖。 71圖 54、PGO之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 55、VGCF之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 56、LFP/C之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 57、LFP/C/PGO之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 58、LFP/C/VGCF之SEM表面形貌圖: (a)

.、(b). 在5kx、(c).、(d). 在10kx。 75圖 59、LFP/C樣品EDS元素mapping分析圖。 76圖 60、LFP/C樣品EDS元素分析光譜圖。 76圖 61、LFP/C/PGO樣品EDS元素mapping分析圖。 77圖 62、LFP/C/PGO樣品EDS元素分析光譜圖。 77圖 63、LFP/C/VGCF樣品EDS元素mapping分析圖。 78圖 64、LFP/C/VGCF樣品EDS元素分析光譜圖。 78圖 65、自製PGO添加劑在HR-TEM之分析圖。 80圖 66、市售VGCF添加劑在HR-TEM之分析圖。 80圖 67、LFP/C粉體在H

R-TEM之分析圖。 81圖 68、LFP/C/PGO粉體在HR-TEM之分析圖。 82圖 69、LFP/C/VGCF粉體在HR-TEM之分析圖。 83圖 70、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果圖。 85圖 71、LFP/C在不同範圍之In-situ micro-Raman分析圖。 87圖 72、LFP/C/VGCF在不同範圍之In-situ micro-Raman分析圖。 87圖 73、LFP/C材料之BET比表面積分析圖。 89圖 74、LFP/C/PGO材料之BET比表面積分析圖。 89圖 75、LFP/C/VGCF材料之BET比表面積分析圖。 9

0圖 76、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量曲線圖。 94圖 77、LFP/C在0.1C/0.1C充放電速率活化階段電性曲線圖。 95圖 78、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性曲線圖。 96圖 79、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段階段電性曲線圖。 97圖 80、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化曲線圖。 98圖 81、LFP/C在0.2C/0.2C-10C充放電速率電性曲線圖。 100圖 82、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性曲線圖

。 101圖 83、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性曲線圖。 102圖 84、添加不同導電碳材在0.2C/0.2-10C速率電性曲線圖。 103圖 85、LFP/C在0.1C/0.1C充放電速率30 cycles電性曲線圖。 106圖 86、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性曲線圖。 107圖 87、LFP/C/VGCF在0.1C/0.1C充放電速率30 cycles電性曲線圖。 108圖 88、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性曲線圖。 109圖 89、LFP/C在1

C/1C充放電速率100 cycles之電性曲線圖。 110圖 90、LFP/C/PGO在1C/1C充放電速率100 cycles之電性曲線圖。 111圖 91、LFP/C/VGCF在1C/1C充放電速率下100 cycles之電性曲線圖。 112圖 92、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性曲線圖。 113圖 93、LFP/C在1C/10C充放電速率下100 cycles之電性曲線圖。 114圖 94、LFP/C/PGO在1C/10C充放電速率下100 cycles之電性曲線圖。 115圖 95、LFP/C/VGCF在1C/10C充放電速率下

100 cycles之電性曲線圖。 116圖 96、添加不同導電碳材在1C/10C充放電速率100 cycles之電性曲線圖。 117圖 97、LFP/C添加不同導電碳材之CV分析圖。 119圖 98、LFP/C樣品之電化學微分曲線分析。 121圖 99、LFP/C/VGCF樣品之電化學微分曲線分析。 122圖 100、LFP/C樣品添加不同導電碳材之電化學微分曲線分析。 123圖 101、等效電路圖模組圖[112]。 125圖 102、在0.1C/0.1C充放5次循環後,不同導電碳材製備LFP/C樣品:(a). EIS阻抗比較圖、(b).鋰離子擴散係數比較圖。 126圖 10

3、在0.1C/0.1C充放30次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 127圖 104、在1C/1C充放100次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 128圖 105、LFP/C單次步驟充放電曲線圖(a) charge;(b) discharge。 132圖 106、LFP/C之V vs.τ1/2分析圖。 132圖 107、LFP/C之GITT充放電曲線圖。 133圖 108、LFP/C/VGCF之GITT充放電曲線圖。 133圖 109、GITT單次步驟比

較(a) charge、(b) discharge。 134圖 110、GITT之充電分析圖。 134 表目錄表 1、鋰離子電池之陰極材料的特性比較分析表 9表 2、鋰離子電池常用有機溶劑之特性比較 15表 3、LiFePO4與FePO4之晶格參數 17表 4、實驗藥品 39表 5、實驗儀器與設備 40表 6、充放電條件計算表 60表 7、方程式中符號及單位 63表 8、添加不同導電碳材之陰極複合材料XRD晶相比較表 66表 9、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果 85表 10、LFP/C、LFP/C/PGO、LFP/C/VGCF之比表面積分析結果

88表 11、LFP/C、LFP/C/PGO、LFP/C/VGCF之粉體電子導電度結果分析 91表 12、添加不同導電碳材之陰極複合材料之殘碳含量分析 92表 13、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量比較 94表 14、LFP/C在0.1C/0.1C充放電速率活化階段電性比較 95表 15、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性比較 96表 16、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段電性比較 97表 17、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化比較 98表 18、LFP/C在

0.2C/0.2C-10C充放電速率電性比較 100表 19、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性比較 101表 20、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性比較 102表 21、添加不同導電碳材在0.2C/0.2-10C速率電性比較表 103表 22、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性比較表 107表 23、LFP/C/VGCF在0.1C/0.1C充放電速率下30 cycles電性比較表 108表 24、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性比較表 10

9表 25、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性比較表 113表 26、添加不同導電碳材在1C/10C充放電速率100 cycles之電性比較表 117表 27、LFP/C添加不同導電碳材之CV分析結果 119表 28、LFP/C樣品之電化學微分曲線分析表 121表 29、LFP/C/VGCF樣品之電化學微分曲線分析表 122表 30、LFP/C樣品添加不同導電碳材之電化學微分曲線分析 123表 31、在0.1C/0.1C充放5次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 126表 32、在0.1C/0.

1C充放30次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 127表 33、在1C/1C充放100次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 128表 34、鋰離子的擴散係數方程式中符號及單位 130