AGV 磁 軌的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

AGV 磁 軌的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦孟新宇寫的 現代機械設計手冊:單行本智慧裝備系統設計(第二版) 和和田忠太的 機械構造解剖圖鑑【修訂版】都 可以從中找到所需的評價。

這兩本書分別來自化學工業 和世茂所出版 。

國立臺北科技大學 電機工程系 姚立德所指導 姚磊的 基於超寬頻感測器之室內定位系統分析與改善 (2021),提出AGV 磁 軌關鍵因素是什麼,來自於超寬頻感測器、基站位置分佈、緊密融合室內定位系統、擴展卡爾曼濾波器、加速度自調整。

而第二篇論文國立虎尾科技大學 自動化工程系碩士班 陳建璋所指導 孫浩峻的 應用於在線式無人搬運載具之無線電能取電模組設計 (2021),提出因為有 在線式電動車、取電模組、有限元素分析的重點而找出了 AGV 磁 軌的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了AGV 磁 軌,大家也想知道這些:

現代機械設計手冊:單行本智慧裝備系統設計(第二版)

為了解決AGV 磁 軌的問題,作者孟新宇 這樣論述:

一部順應“中國製造2025”智慧裝備新要求、技術先進、資料可靠的現代化機械設計工具書,從新時代機械設計人員的實際需求出發,追求現代感,兼顧實用性、通用性,準確性,涵蓋了各種常規和通用的機械設計技術資料,貫徹了新的國家及行業標準,推薦了國內外先進、智慧、節能、通用的產品。 第22篇 智慧裝備系統設計 第1章 智慧裝備系統設計基礎知識 1.1智慧裝備系統的定義、特點和發展趨勢22-3 1.2智慧裝備系統基本構成要素22-5 1.2.1系統構成22-5 1.2.2技術構成22-6 1.2.3系統分類及特徵22-8 1.3智慧裝備系統產品的設計方法22-9 1.3.1智慧裝備系統

主要的分析方法22-9 1.3.1.1系統的解耦與耦合22-9 1.3.1.2系統設計公理22-10 1.3.1.3單元化設計原理22-12 1.3.1.4智慧裝備系統的結構層次22-13 1.3.1.5智慧裝備系統的基本分析22-16 1.3.2模組化設計方法22-19 1.3.3柔性化設計方法22-19 1.3.4取代設計方法22-19 1.3.5融合設計方法22-20 1.3.6優化設計方法22-20 1.3.7人-機-環境系統設計方法22-20 1.3.8可靠性設計方法22-21 1.3.9系統安全性設計方法22-24 1.4智慧裝備系統總體設計22-25 1.4.1智慧裝備產品的需求

分析22-25 1.4.2智慧裝備系統設計技術參數與技術指標制定方法22-25 1.4.3智慧裝備系統原理方案設計22-26 1.4.3.1系統的原理方案分析22-26 1.4.3.2基本功能單元的原理方案分析22-26 1.4.3.3系統的功能結構圖設計方法22-27 1.4.4智慧裝備系統結構方案設計22-28 1.4.4.1系統結構方案設計的程式22-28 1.4.4.2系統結構方案設計的基本原則22-29 1.4.5智慧裝備系統總體佈局設計22-29 1.4.6總體準確度分析與設計22-29 1.5智慧裝備系統設計流程22-30 第2章 傳感檢測系統設計 2.1傳感檢測系統22-33

2.1.1傳感檢測系統的概念與特點22-33 2.1.2傳感檢測系統的結構與組成22-33 2.1.2.1非電量的特徵22-33 2.1.2.2傳感檢測系統的結構22-34 2.1.2.3傳感檢測系統的硬體組成22-36 2.1.2.4傳感檢測系統的軟體組成22-36 2.1.3感測器信號的處理22-37 2.1.4信號傳輸22-37 2.2感測器及其應用22-38 2.2.1感測器的組成與分類22-38 2.2.2感測器的主要性能指標22-38 2.2.3各種用途的常用感測器22-39 2.2.4基於各種工作原理的常用感測器22-43 2.2.4.1電阻式感測器22-43 2.2.4.2電

容式感測器22-48 2.2.4.3電感感測器22-51 2.2.4.4壓電感測器22-58 2.2.4.5磁電感測器22-63 2.2.4.6磁致伸縮感測器22-65 2.2.4.7熱電式感測器22-71 2.2.4.8霍爾式感測器22-77 2.2.4.9光纖傳感器22-80 2.2.4.10光電感測器22-85 2.2.4.11紅外線感測器22-91 2.2.4.12鐳射式感測器22-92 2.2.4.13數字式感測器22-97 2.2.4.14氣敏感測器22-101 2.2.5智慧感測器22-114 2.2.6微感測器22-117 2.2.6.1定義特點及分類22-117 2.2.6.

2機械量微感測器22-117 2.2.6.3基於MEMS技術的氣體微感測器22-120 2.2.7感測器的選用22-120 2.2.8多感測器資訊融合22-122 2.3類比信號檢測系統設計22-124 2.3.1類比信號檢測系統的組成22-124 2.3.2基本轉換電路22-125 2.3.3信號放大電路22-127 2.3.4信號調製與解調22-130 2.3.5濾波電路22-131 2.3.6電平轉換電路22-133 2.3.7採樣-保持電路22-133 2.3.8運算電路22-133 2.3.9A/D轉換電路22-136 2.3.10數位信號的預處理22-137 2.3.11抗干擾設計

22-142 2.4數位信號檢測系統設計22-144 2.4.1數位信號檢測系統的組成22-144 2.4.2編碼器及光柵信號的電子細分方法22-145 2.5現代傳感檢測技術的新發展22-150 2.6典型傳感系統設計應用實例和檢測裝置22-152 2.6.1CX300型數控車銑加工中心傳感檢測系統設計實例22-152 2.6.2飛鋸檢測系統設計實例22-153 2.6.3新風節能系統設計實例22-156 第3章 伺服系統設計 3.1伺服系統22-159 3.2伺服系統的基本要求和設計方法22-159 3.2.1伺服系統的基本要求22-159 3.2.2伺服系統的設計步驟22-160 3.

3伺服系統執行元件及其控制22-160 3.3.1執行元件種類和特點22-160 3.3.2電氣執行元件22-161 3.3.2.1直流伺服電機及其驅動22-161 3.3.2.2交流伺服電機及其驅動22-163 3.3.2.3松下MINAS A5 伺服電機22-165 3.3.2.4步進電機及其驅動22-170 3.3.3液壓執行機構22-176 3.3.4氣動執行裝置22-176 3.3.5新型執行裝置22-177 3.3.6電液伺服閥22-177 3.3.7電液比例閥22-178 3.3.8電液數字閥22-178 3.4執行電機的選擇及設計22-179 3.4.1交流電動機調速方式22-

179 3.4.2交流變頻調速器22-180 3.5開環控制伺服系統及其設計22-181 3.6閉環伺服系統設計22-182 3.7數位伺服系統設計22-183 第4章 機械系統設計 4.1智慧裝備機械系統的基本要求和組成22-185 4.2機械傳動機構設計22-186 4.2.1機械傳動機構的分類及選用22-186 4.2.1.1智慧裝備系統對機械傳動的要求22-186 4.2.1.2機械傳動機構的分類22-187 4.2.1.3機械傳動機構的選用22-188 4.2.1.4機械傳動系統方案的選擇22-188 4.2.2傳動因素分析22-189 4.2.3絲杠螺母機構傳動設計22-191

4.2.3.1滾珠絲杠副基本結構22-191 4.2.3.2滾珠絲杠副的主要尺寸和精度等級22-201 4.2.3.3滾珠絲杠副的選擇設計計算22-205 4.2.3.4滾珠螺母安裝連接尺寸22-210 4.2.3.5靜壓絲杠螺母副22-217 4.2.4其他傳動機構22-219 4.2.4.1齒輪傳動22-219 4.2.4.2撓性傳動22-224 4.2.4.3間歇傳動22-225 4.3機械導向機構設計22-227 4.4機械執行機構設計22-232 4.4.1執行機構分析22-232 4.4.1.1主要性能指標22-232 4.4.1.2系統的品質22-235 4.4.1.3能量轉換介

面22-238 4.4.2微動機構22-240 4.4.3誤差補償機構22-244 4.4.4定位機構22-246 4.4.5設計實例22-247 4.4.5.1數控機床動力卡盤與回轉刀架22-247 4.4.5.2工業機器人末端執行器22-250 4.5支撐系統和機架設計22-252 4.5.1軸系設計的基本要求及類型22-252 4.5.2機架的基本要求及結構設計要點22-254 第5章 微機控制系統設計 5.1微機控制系統的基本組成與分類22-258 5.1.1微機控制系統的基本組成22-258 5.1.1.1微機控制系統的硬體組成22-258 5.1.1.2微機控制系統的軟體組成22

-259 5.1.2微機控制系統的分類22-259 5.2微機控制系統設計的方法和步驟22-260 5.2.1類比化設計方法和步驟22-260 5.2.1.1模擬化設計思想22-260 5.2.1.2香農採樣定理22-260 5.2.1.3類比化設計步驟22-261 5.2.1.4數位PID控制系統設計22-262 5.2.2離散化設計方法和步驟22-265 5.3微機控制系統的數學模型22-265 5.3.1差分方程22-265 5.3.1.1差分的概念和差分方程22-265 5.3.1.2差分方程的求解方法22-266 5.3.2Z傳遞函數22-266 5.3.2.1基本概念22-266

5.3.2.2開環系統的脈衝傳遞函數22-266 5.4微機控制系統分析22-268 5.4.1線性離散系統的時域回應分析22-268 5.4.2離散系統的穩定性分析22-269 5.4.2.1Z平面內的穩定條件22-269 5.4.2.2S平面與Z平面之間的映射關係22-269 5.4.2.3穩定判據22-270 5.4.3離散系統的穩態誤差22-270 5.4.4離散系統的暫態性能22-271 5.4.4.1閉環極點與暫態分量的關係22-271 5.4.4.2離散系統暫態性能的估算22-272 5.4.5離散系統的根軌跡分析法22-273 5.4.5.1Z平面上的根軌跡22-273 5.4

.5.2用根軌跡法分析離散系統22-275 5.4.6離散系統的頻率法22-275 5.5典型微機控制系統及設計應用實例22-276 5.5.1基於工業控制電腦的微機控制系統22-276 5.5.1.1系統結構和特點22-276 5.5.1.2工控組態軟體22-276 5.5.2基於單片機的微機控制系統22-276 5.5.3基於可程式設計控制器的微機控制系統22-276 第6章 介面設計 6.1介面設計基本方法和介面晶片22-278 6.1.1介面設計與分析的基本方法22-278 6.1.2常用的介面晶片22-278 6.2人機介面電路設計22-278 6.2.1人機介面電路類型與特點22

-278 6.2.2輸入介面電路設計22-279 6.2.3輸出介面電路設計22-280 6.3機電介面電路設計22-290 6.3.1機電介面電路類型與特點22-290 6.3.2信號採集通道介面中的A/D轉換介面電路設計22-290 6.3.3控制量輸出通道中的D/A轉換介面電路設計22-292 6.3.4控制量輸出通道中的功率介面電路設計22-294 6.3.4.1PWM整流電路22-294 6.3.4.2光耦合器驅動介面設計22-296 6.3.4.3繼電器22-298 6.3.5被控量回饋通道中的介面電路設計22-301 6.3.5.1速度回饋介面22-301 6.3.5.2位移回饋

介面22-301 第7章 設計實例 7.1數控機床的改造22-304 7.1.1數控車床的改造22-304 7.1.1.1數控車床的改造方案組成框圖22-304 7.1.1.2機械結構改造設計方案22-304 7.1.1.3數控車床電腦控制系統改造硬體設計22-307 7.1.1.4數控車床電腦控制系統改造軟體設計22-312 7.1.2大型數控落地鏜銑床的系統改造實例22-312 7.2工業機器人系統設計實例22-314 7.2.1工業機器人的組成與分類22-314 7.2.2SCARA型裝配機器人系統設計22-314 7.2.3BJDP-1型機器人設計22-319 7.2.4纜索並聯機器

人設計22-323 7.3無人搬運車(AGV)系統設計22-327 7.3.1無人搬運車系統(AGVS)22-327 7.3.2無人搬運車的工作原理和結構22-330 7.3.2.1無人搬運車的引導方式22-330 7.3.2.2無人搬運車的結構22-331 7.3.3典型的無人搬運車22-333 7.3.3.1瑞典AGV電子有限公司的產品22-333 7.3.3.2美國AGV產品有限公司的產品22-335 7.3.3.3中國新松AGV產品22-338 7.4信函連續作業自動處理系統設計22-343 7.4.1信函自動處理流水線22-344 7.4.1.1信函自動處理流水線的組成22-344

7.4.1.2信函自動處理的前提條件22-345 7.4.2信函分類機22-345 7.4.3緩衝儲存器22-347 7.4.4理信蓋銷機22-349 7.4.5信函分揀機22-352 7.4.5.1信函分揀的同步入格控制22-352 7.4.5.2條碼及光學條碼自動識別22-352 7.4.5.3光學文字自動識別22-355 參考文獻22-360

基於超寬頻感測器之室內定位系統分析與改善

為了解決AGV 磁 軌的問題,作者姚磊 這樣論述:

超寬頻感測器(Ultra-wideband, UWB)被廣泛的使用在室內定位領域,超寬頻感測器的室內定位通常是指移動端的定位,移動端通過無線電與基站通信並計算移動端和周圍每個基站之間的距離。本文提出了一個數學模型,分別分析了移動端在2D和3D空間定位的誤差,通過數學模型探討了影響移動端定位誤差的因素,分析得到了最佳的基站安裝位置。根據所得出的最佳的基站位置分佈,移動端在2D和3D空間的定位誤差均大幅度降低。然而,在室內的環境中超寬頻感測器容易受障礙物或人的影響產生異常值,單獨使用超寬頻感測器的定位結果容易發生跳變,而基於慣性感測單元(Inertial Measurment Unit, IMU

)的慣性導航系統可以輸出連續的定位結果卻存在累積誤差的問題,長時間定位結果容易發散。基於以上的分析,本文提出一套有效的系統框架,將超寬頻感測器和慣性感測器兩者緊密結合共同定位,不僅避免了慣性感測器存在的累積誤差問題而且能避免超寬頻感測器異常值對定位連續性的影響。然而,融合超寬頻感測器和慣性感測器雖然能夠更加精確和穩定的定位,但是研究發現當超寬頻感測器移動端安裝於加速度較大的載具上時,載具自身的運動加速度也會影響定位精度,表现为隨著運動加速度變大定位精度隨之降低。因為过程中的姿態角是通過重力加速度在水準方向的分量進行修正,當載具快速运动時在水準方向上也會產生比較大的運動加速度,而加速度感測器難以

將運動加速度與重力加速度的水準分量分開,導致姿態角估測誤差增加,進一步影響到定位精度。為解決上述問題,本文建立了一套在比較大運動加速度下的姿態角誤差估測模型,提出一種加速度自適應擴展卡爾曼濾波器 (Acceleration Adaptive Extended Kalman Fliter, ACCAEKF)的方法。ACCAEKF根據加速度大小自動調節預測誤差的協方差矩陣,能有效修正存在较大運動加速度時的定位誤差。此外本文還發現在比較小的運動加速度或者靜止狀態下,加速度量測雜訊會影響ACCAEKF的定位穩定性。針對這種現象,本文通過對加速度引入的誤差協方差矩陣進行了詳細的推導,提出一種優化方法將雜

訊協方差矩陣從誤差協方差矩陣中減去,有效避免低運動加速度下量測雜訊對定位穩定性的影響。本文還針對超寬頻感測器容易在多障礙物的室內環境產生非視距通訊(Non-light of Sight, NLOS)的問題做了優化,非視距通訊可以通過支持向量機(Support Vector Machine, SVM)對超寬頻感測器的信道衝擊響應(Channel Impulse Responses, CIR)和訊號強弱(Received Signal Strength Indicator, RSSI)的特徵進行分類,支持向量機是一種經典的監督機器學習(Machine Learning, ML)算法,適用於分類和回

歸問題。本文應用對視距通訊(Light of Sight, LOS)和非視距通訊的分類來驗證ACCAEKF在穿越複雜的室內環境時的定位性能,在實驗中獲得了比較高的定位精度。最後,本文通過MATLAB模擬實驗分別模擬機器人在2D空間和3D空間下基站位置的各種不同的分佈情形併計算定位誤差以此來驗證本文提出的最佳的基站位置分佈,除此之外,本文利用超寬頻感測器多基站的室內定位系統實際做了實驗,實驗結果表明本文找出的最佳基站位置分佈能顯著提高系統定位精度。本文基於上文提出的最佳的基站分佈,應用ACCAEKF進行模擬和室內定位實際實驗,实验結果表明本文提出方法在載具低速運動和加速度劇烈變化的情況下都能得到

很好的定位效果。

機械構造解剖圖鑑【修訂版】

為了解決AGV 磁 軌的問題,作者和田忠太 這樣論述:

  兩千年前,希臘出現自動販賣機,機械的起源就此開啟。希臘科學家赫龍(Heron of Alexandria),將他所發明的自動門、販賣機、里程計數器等匯集成著作《Mechanica》,開啟人類發明機械的時代。   《機械構造解剖圖鑑【修訂版】》詳細介紹149種機械,範圍涵蓋家庭機械、辦公與醫療機械、戶外常見的機械、休閒娛樂機械、運輸機械、產業機械,並提供未來可能的機械前景,由致力於推動「發明造物」的大同大學機械系教授賴光哲審訂,是了解現代機械的最佳指南,也是機械工程入門最適當的好書。

應用於在線式無人搬運載具之無線電能取電模組設計

為了解決AGV 磁 軌的問題,作者孫浩峻 這樣論述:

在線式電動車(On-line Electric Vehicles)是以無線電力傳輸進行在線式供電電動載具,解除了電動載具上的大容量電池限制及改變了有線傳輸的束縛,像是拿掉了集電弓仍然可以行走的電車,對於安全性、空間利用與景觀都有所改善,雖然在線式電動車要實行在自用車輛上還有經濟層面上的諸多問題,但運用在固定行駛路線的大眾運輸或是智慧工廠中的無人搬運載具上的進展是相當令人期待的,尤其在電動載具依然存在諸多疑慮的情況下,如電池價格、電池壽命、行駛距離、充電速度、充電站便利性,當智慧工廠中的無人搬運載具不再仰賴電池供電,這意味著不再需要擔心電池耗盡而停下進行充電,也代表工廠無人搬運載具的稼動率大大

提升,而在線式電動車所遭受的質疑是接收效率與建置成本,但在國內外文獻中可以得知,已有研究團隊提出效率達到90%的在線式電動車,而電源建置部分也有對其進行優化的相關文獻。因此,本研究針對智慧工廠中的無人搬運載具提出兩種不同類型的取電模組,第一種是近磁感應式的無線電力傳輸取電模組設計,此形式的載具如半導體廠內使用的空中走行式無人搬運車(Overhead Hoist Transfer,OHT),載具會行走於軌道上,但電力的傳輸是無線的,供電電纜經由取電模組進行耦合達成電力傳輸但兩者之間並未接觸,以常見的E型與H型取電模組進行改良與比較,結果中顯示改良後的取電模組耦合效果有著明顯增加,接著進行供電電纜

中心距離的調整觀察取電模組的耦合狀況並使其達到最佳化,第二種是平面式的無線電力傳輸取電模組設計,供電電纜裝置於地面或是地底,接著在載具底盤裝上取電模組的方式進行無線電力傳輸,此種形式的傳輸方式難度較高,因為通常供電電纜與取電模組之間的氣隙距離較大,造成的磁漏較為嚴重,所以耦合效果較低,在本研究中提出一種橢圓接收線圈並且含有補償線圈,藉由補償線圈減緩線圈中心磁漏來提升耦合效果,且在氣隙5 cm的情況下補償線圈接收的磁通密度強度高於接收線圈42%,最後,兩種接收線圈的設計皆經由有限元素分析進行模擬,並對其結果進行分析與改善,結果顯示兩種類型的取電模組其耦合取電效能都有所增加。