Cyclo 減速機的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

另外網站日本住友賽克樂cyclo減速機型號替換對照表也說明:大同發電機、東元發電機、今豐減速機大同減速機馬達、大同住友注重減速機馬達、 日本住友賽驅樂SUMITOMO CYCLO 減速機、大同減速機馬達、 大同東芝變頻器、大同單相 ...

國立中央大學 光機電工程研究所 蔡錫錚所指導 黃勁儫的 考量修形、變形與誤差影響下之擺線行星齒輪 機構受載接觸特性之研究 (2020),提出Cyclo 減速機關鍵因素是什麼,來自於齒面嚙合分析、受載齒面接觸分析、擺線減速機、輪廓修形、影響係數法、擺線行星齒輪機構、軌跡圓法、軸承壽命評估。

而第二篇論文國立臺灣大學 機械工程學研究所 李志中所指導 徐辰揚的 RV減速機之力量分析與動態模擬 (2019),提出因為有 RV減速機、齒形創成、力量分析、運動學分析、ADAMS的重點而找出了 Cyclo 減速機的解答。

最後網站Cycloidal Drive Reducer Series 賽驅樂減速機系列則補充:Cycloidal Drive Reducer Series. 賽驅樂減速機系列. A1. 001. Cycloidal Drive Reducer Series 賽驅樂減速機系列. Page 2. 002. Cycloidal Drive Reducer Series.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Cyclo 減速機,大家也想知道這些:

Cyclo 減速機進入發燒排行的影片

動画の様な品々をヤフーオークションにて出品中!!! http://sellinglist.auctions.yahoo.co.jp/user/myuki0927
神奈川県厚木市上依知で買取や修理もしてます。
よろしければチャネル登録おねがいします。https://www.youtube.com/channel/UC_x5D08yY4KobXsrUtHaa5w?sub_confirmation=1
この動画は YouTube 動画エディタ(http://www.youtube.com/editor)で作成しました





































































































































































関連動画
Fine Cyclo Drive: Präzisionsgetriebe mit HDD Servomotor, Sumitomo, ROTE COUCH EXPRESS, SPS 2015
https://www.youtube.com/watch?v=bDQK13eYfHg
Sumitomo Drive Technologies México

考量修形、變形與誤差影響下之擺線行星齒輪 機構受載接觸特性之研究

為了解決Cyclo 減速機的問題,作者黃勁儫 這樣論述:

行星分流式擺線針輪減速機,即業界俗稱之RV®減速機,為結合漸開線行星齒輪組與擺線針輪行星減速機構的二階式減速機。此設計具有擺線針輪行星齒輪機構高減速比、高嚙合剛性之優勢以及漸開線行星組齒輪功率分流、製造成熟之優點。因此也多應用在高精度與大負載傳動場合。然而這也使得此類型減速機必須考量以下問題:擺線盤與漸開線齒廓之修形模式、擺線齒盤支撐軸承壽命、多接觸對之受載狀況,以及元件加工誤差與組裝誤差對傳動與受載接觸特性的影響。 為分析前述之問題,本論文提出了納入減速機主要負載元件,如漸開線齒輪、擺線針輪以及擺線齒盤支撐軸承等多接觸對的齒面嚙合分析(Tooth Contact Analysis,

TCA)模型與受載齒面接觸分析(Loaded Tooth Contact Analysis, LTCA)模型。在TCA模型中,擺線針輪接觸對的嚙合分析在理想擺線輪廓狀況下,係利用瞬心法分析;以移距--等距修整組合產生的修整擺線輪廓,則使用軌跡圓法來進行分析。而漸開線齒輪接觸對則是使用漸開線齒面嚙合關係求解。如此可求得個別減速段受誤差下之傳動誤差與背隙變化,以及由運動關係進一步求出整體機構在誤差下的傳動誤差與背隙曲線。 LTCA模型則是利用影響係數法為基礎建立多接觸對計算模型,以分析減速機中主要受負載元件之相關接觸對的負載、接觸斑與接觸應力分布情形。此LTCA模式係納入TCA模型之接觸對輪

廓在具誤差條件下之幾何關係,以及考慮赫茲變形、齒輪齒彎曲變形、軸彎曲變形與軸扭轉變形影響之情況;其中擺線盤支撐軸承則考慮實際圓柱滾子與曲軸、擺線齒盤軸承孔之接觸。同時亦應用Ioannides-Harris軸承壽命模型,根據滾子接觸應力分布來評估各種滾子輪廓之軸承壽命。 在本研究中使用一款市售減速機產品做為案例,探討齒廓修整與元件誤差對接觸特性之影響。齒廓修整係以正移距--正等距、負移距--正等距與負移距--負等距等三種修整組合;誤差則考慮擺線盤偏心誤差、銷輪節圓中心偏心誤差、曲軸相位角誤差、銷位置誤差等時變誤差,以及銷輪節圓徑誤差、銷徑誤差與曲軸偏心誤差等非時變誤差。 嚙合分析結果

顯示在相近設計背隙條件下,以正移距--正等距修整擺線齒廓會得到較低的傳動誤差變化量。而在具有元件誤差狀況下,元件誤差對傳動誤差的影響大於修整形式,其中時變誤差中的偏心誤差影響最高,0.01 mm的銷輪偏心誤差會使傳動誤差峰對峰值增加至16.4 arcsec,背隙損失達49.5 arcsec。而正移距—正等距修整輪廓在偏心誤差下會造成接觸位置接近齒底的狀況,使得傳動誤差峰對峰值加劇變化;除此條件之外,元件誤差與輪廓修整並不會對傳動誤差造成影響。 而LTCA的分析分為理想擺線輪廓以及修整輪廓設計下之負載分析兩部分。擺線齒輪機構具理想輪廓之負載分析主要目的係求得在擺線盤理想輪廓以及無誤差狀況下

的各種負載特性,包含銷負載與接觸應力變化曲線,軸承負載曲線,擺線盤與曲軸的扭矩曲線、漸開線齒對的負載曲線以及元件受載位移曲線與機構剛性,以做為分析的參考基準。從理論擺線輪廓設計下之負載結果顯示,單一擺線輪廓與銷接觸個數為銷數目的44%,最大接觸應力則發生在擺線輪廓曲率最大位置附近。軸承負載則會隨著輸出轉角有週期變化,在本案例中,最高可達21 kN,最低則僅為2.3kN。而軸承最大、最小負載發生位置會發生在曲軸上的特定位置,即垂直於曲軸軸線與軸承中心連線上,在此兩相差180°的位置會分別受到最大與最小負荷與應力。另外曲軸的軸彎曲變形亦會使得漸開線齒輪對的負載分佈不均,其齒面負載係數KHβ可達1.

52。 而在具擺線輪廓修整與機構誤差之負載分析重點,則是探討輪廓與機構誤差對負載變化造成的影響。分析結果顯示,擺線輪廓修整主要影響銷輪接觸對負載,對其他負載特性幾乎沒有影響。正移距--正等距修整擺線齒廓因為具有較多的銷接觸個數,而有較低的銷負載與較佳的機構剛性,與負移距--負等距修整擺線齒廓相比,平均銷接觸數多出56%,負載峰值減少37 %,而且機構剛性高出8.5%。在誤差影響方面,以時變誤差中的偏心誤差影響最大,如在銷輪偏心誤差為0.01 mm @ 0°狀況下,增加了約43.9 %至71.2%的銷負載峰值;而且偏心誤差亦會使擺線盤扭矩分配與曲軸扭矩分配產生變化。例如正移距--正等距修整

的擺線盤扭矩傳輸分配曲線,會因銷輪偏心誤差(0.01 mm @ 0°)產生扭矩30.3% 的曲線振幅變動。在曲軸傳輸扭矩方面,銷輪偏心誤差則會使兩個曲軸的平均傳輸扭矩上升12%,另一個曲軸減少19%。而非時變誤差僅對擺線盤接觸對產生較明顯的影響,其他則無。另一方面,漸開線齒對相關誤差僅對擺線盤扭矩分配與曲軸扭矩分配產生較明顯的影響。同時分析結果亦顯示修整輪廓與機構誤差的交互影響很輕微。 在擺線盤支撐軸承負載與壽命評估方面,軸承負載變化並不會因擺線輪廓修整形式而有明顯的不同,其中負移距--負等距修整擺線輪廓雖會使軸承負載略微降低,但僅有0.08 %的差距,可忽略。而滾子輪廓修整方面,本論文

比較了無修整、兩種對數曲線修整與端面拋物線修整、以及廠商特定滾柱輪廓的應力分布變化。結果顯示每種修整皆能達到消除邊緣應力集中的效果,而端面拋物線修整會在修整起始處附近產生應力上升的現象,其上升量約為滾子中央應力的4~4.7 %。由滾子修整輪廓所得到的接觸應力分布,以Ioannides-Harris軸承壽命模型計算出軸承壽命顯示,廠商特定滾柱輪廓在無誤差下,壽命可達近12,900小時,比起其他修整輪廓高出70% 至300%不等之壽命。而以對數曲線滾柱輪廓在綜合誤差下所得到分析結果顯示,壽命會從無誤差狀況下7,420小時下降到2,950小時。 綜上所述,本論文所提出的LTCA模型提供了完整的

行星分流式擺線針輪減速機分析能力,可以協助業界改善既有設計或是輔助開發新型減速機以提升傳動效能,提升產業競爭力。

RV減速機之力量分析與動態模擬

為了解決Cyclo 減速機的問題,作者徐辰揚 這樣論述:

RV減速機為一結合擺線齒輪系及行星齒輪系之減速機構,除了具有傳統擺線減速機之特性,如高減速比、高承載能力及高傳動效率等優點,更可透過與行星齒輪系之組合,得到更多樣之減速比與較高的衝擊耐性,於是被廣泛用於工業用機械手臂領域,而RV減速機的性能-包括傳動精度、效率以及力學性能等,對手臂的整體表現有極大的影響,因此,對於RV減速機元件的受力分析,需要有更深入的探討。本文首先介紹RV減速機之構造,並用齒輪原理創成擺線齒形及漸開線齒形;接著,提出一種和RV減速機具有相同運動模式之簡化模型,並透過該模型求解RV減速機之曲柄軸軸承負載,再以此為基礎進行具齒形修形之擺線齒輪和針齒間的接觸力分析。最後,本文利

用電腦輔助軟體ADAMS 模擬減速機作動時的負載,並和受力分析之理論值互相比較,且對兩者間的趨勢進行討論,此結果可用以提供設計者迅速對減速機內部零件之受力進行預測。