EP2220 拉花的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

國立成功大學 臨床醫學研究所 蔡坤哲、陳志弘所指導 宋碧姍的 神經新生現象於化療誘發認知功能障礙之角色與治療 (2021),提出EP2220 拉花關鍵因素是什麼,來自於認知功能障礙、認知功能曲線、神經新生、化療相關認知功能障礙、動物模型、紫杉醇。

而第二篇論文臺北醫學大學 細胞治療與再生醫學國際博士學位學程 蔡 伊琳所指導 Ageng Brahmadhi的 Application of Liquid Chromatography-Mass Spectrometry Methods to Therapeutic Drug Monitoring and Exosomal Proteomics Study (2020),提出因為有 Dried plasma spot、Fluoroquinolones、Microwave-assisted extraction、Therapeutic drug monitoring、Exosome、Proteomic、Placental mesenchymal stem cell、Mass spectrometry的重點而找出了 EP2220 拉花的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了EP2220 拉花,大家也想知道這些:

神經新生現象於化療誘發認知功能障礙之角色與治療

為了解決EP2220 拉花的問題,作者宋碧姍 這樣論述:

認知功能障礙所影響的認知功能層面包括學習、記憶、感知、語言、專注力及問題解決能力。嚴重程度可能從輕微認知功能障礙、輕度至重度失智症。成因可能來自原發性腦退化性疾病、腦部相關疾患、身體系統性影響腦部功能,比如感染、發炎、內分泌、營養、藥物等因素。而化療藥物所引發之認知功能障礙 (chemotherapy-induced cognitive impairment, CICI) 為其中一藥物給予身體系統性影響腦部而導致之認知功能障礙,為一常見且越來越為人所認知之化療藥物的可能副作用。直至目前為止,其致病機轉尚未完全釐清,而不同化療藥物所誘發之認知功能疾患之致病機轉可能不同,但有動物實驗及人體影像證

據顯示化療所導致之認知及情緒障礙可能與海馬迴受損相關。CICI病患在影像學研究上可見海馬迴萎縮,而阿茲海默症的研究及基因相關研究發現,神經新生之路徑影響可能影響海馬迴體積。因此,化療藥物誘發之腦部神經新生受損可能為CICI的其中一個致病機轉。在我們過去所做的文獻回顧發現,會影響神經新生相關的因素包含基因、環境、藥物等造成內生性路徑及外生性路徑的影響,其中包括神經再生滋養因子 (brain-derived neurotrophic factor, BDNF) 及發炎現象 (inflammation)。因此,在我們的動物研究模型中,我們探討神經新生現象在CICI所扮演的角色及其可能之分子機轉。首先

,我們使用紫杉醇 (paclitaxel) 在小鼠上建立CICI模型,並證實神經新生受損確實造成CICI小鼠的記憶功能障礙及情緒障礙。我們同時發現CICI小鼠在紫杉醇注射後造成發炎細胞素(inflammatory cytokine)的改變。為進一步證實神經新生在 CICI我們同時也在CICI小鼠模型上進一步證實memantine將可能透過調整發炎現象及促進BDNF釋放而成為CICI的潛力治療方式,但不同memantine治療方式所導致對於發炎現象的調節效果不同,而造成情緒障礙治療效果不一。為了進一步將基礎實驗推進到人體實驗,我們進一步進行了前瞻性化療病患的收案計畫,並同步進行前瞻性中風病患的

收案計畫作為比較,進一步探討癌症病患接受化療藥物後的認知功能曲線以及可能的影響因子,並以中風病患之認知功能數據作為比較。未來研究也將進一步探討memantine在化療病患認知功能的治療效益。

Application of Liquid Chromatography-Mass Spectrometry Methods to Therapeutic Drug Monitoring and Exosomal Proteomics Study

為了解決EP2220 拉花的問題,作者Ageng Brahmadhi 這樣論述:

TABLE OF CONTENTCOVER PAGETHESIS CERTIFICATIONACKNOWLEDGEMENT ITABLE OF CONTENT IIILIST OF TABLES VILIST OF FIGURES VIILIST OF ABBREVIATIONS VIIIOVERVIEW OF PhD DISSERTATION XPART I. 1Liquid chromatography-mass spectrometry 1Chapter 1. Introduction of Liquid chromatography-mass spectrometry

21.1. Liquid Chromatography 21.2. Mass Spectrometry 41.3. Ion Source 41.3.1. Atmospheric Pressure Chemical Ionization (APCI) 51.3.2. Electrospray ionization (ESI) 61.4. Mass analyser 61.4.1. Quadrupole mass spectrometer 71.4.2. Time of flight mass spectrometers 81.4.3. Quadrupole ion-

trap spectrometers 81.4.4. Fourier-transform ion cyclotron mass spectrometers 91.4.5. Orbitrap mass analyser 91.5. Liquid chromatography–mass spectrometry application 10PART II 11Application of Liquid Chromatography-Mass Spectrometry Methods to Therapeutic Drug Monitoring 11Abstract 12Chapt

er 2: Introduction of therapeutic drug monitoring for anti-TB treatment 14Chapter 3: Literature review of therapeutic drug monitoring for anti-TB treatment 163.1. Tuberculosis burden 163.2. Fluoroquinolones 173.3. Therapeutic drug monitoring 183.4. Dried plasma spots 193.5. Microwave-assisted

extraction (MAE) 19Chapter 4: Material and Methods of therapeutic drug monitoring for anti-TB treatment 214.1. Reagents and chemicals 214.2. DPS, plasma sample preparation and MAE 214.3. Method validation dried plasma spot 234.3.1. Selectivity 234.3.2. Calibration curves and quality contr

ol samples 234.3.3. Accuracy and precision 234.3.4. Extraction recovery and matrix effect 234.3.5. Stability and carryover 244.3.6. The dilution integrity 244.4. Plasma sample type method validation 244.5. Clinical application 25Chapter 5: Results and Discussions of therapeutic drug mon

itoring for anti-TB treatment 265.1 Sample extraction 265.2 UHPLC-MS/MS 295.3 Dried plasma spot method validation 305.3.1 Selectivity 305.3.2 Calibration curves, accuracy and precision 305.3.3 Recovery, matrix effect, stability and carryover 325.3.4 The dilution Integrity 335.4 Plasm

a sample type method validation 335.4.1 Selectivity 345.4.2 Calibration curve and quality control 346. Clinical application 36Chapter 6. Conclusion 40PART III 41Application of Liquid Chromatography-Mass Spectrometry Methods to Exosomal Proteomic Study 41Abstract 42Chapter 7: Introduction

of exosomal proteomic study 43Chapter 8: Literature review of exosomal proteomic study 448.1. Mesenchymal stem cells 448.2. Mesenchymal stem cells and immune system regulation 458.3. Placental Mesenchymal Stem Cells (pcMSCs) 478.4. Exosome 478.4.1. Exosome definition and size coverage 478.4.

2. Exosome biogenesis 488.5. Exosome isolation and characterization 49Chapter 9: Material and methods of exosomal proteomic study 519.1. Material and reagents 519.2. Initial centrifugation of conditioned medium 519.3. Centrifugal concentration of conditioned medium 519.4. Exosome isolation by

size exclusion chromatography 529.5. ExoQuick-TC™ exosome precipitation solution isolation 529.6. BCA Protein Assay 529.7. Tunable resistive pulse sensing 539.8. Electron microscopy 539.9. Western Blot Analysis 539.10. SDS-PAGE, In-Gel Digestion, Mass spectrometry (MS) 549.11. Bioinformatics

Analysis 54Chapter 10: Results and discussions of exosomal proteomic study 5510.1. Exosome isolation 5510.2. Exosome characterization 5610.3. Proteomic of the pcMSC exosome 5810.4. Exosome contents and skin wound healing 73Chapter 11: Conclusion 78References 79LIST OF TABLESTable 1. Multipl

e reaction monitoring parameters of three fluoroquinolones, and the internal standard (moxifloxacin hydrochloride-13CD3). 22Table 2. Calibration curves of the fluoroquinolone. 31Table 3. The LLOQ and QC samples accuracy and precision of levofloxacin, ciprofloxacin, moxifloxacin. 32Table 4. Extrac

tion recovery and matrix effect of QC samples for levofloxacin, ciprofloxacin, moxifloxacin. 32Table 5. Auto-sampler (4℃) and four-day (-80℃ and room temperature) stability of levofloxacin, ciprofloxacin, moxifloxacin. 33Table 6. Calibration curves of levofloxacin, ciprofloxacin, moxifloxacin for

plasma samples. 34Table 7.Accuracy and precision of quality control plasma samples for the three target analytes. 35Table 8.Comparison of the accuracies and precisions of quality control samples from DPS and plasma preparations. 36Table 9. Drug concentrations of clinical samples in dried plasma s

pot (DPS) and plasma. 37Table 10. Exosome size coverage range 48Table 11. BCA standard preparation 53Table 12. List of identified protein in exosome sample, exocarta, and vesiclepedia. 60Table 13. The 25 most relevant pathways and involved proteins 65Table 14. DAVID functional annotation of ide

ntified protein 68Table 15. DAVID Functional clustering 71Table 16. MMP protein family in skin wound healing process 75Table 17. Dynamic changes of MMP types and scars conditions (148) 76LIST OF FIGURESFigure 1. Diagrammatic of separation (2). 3Figure 2. General layout of mass spectrometers (5)

. 4Figure 3. Schematic diagram of atmospheric pressure chemical ionization source (6). 5Figure 4. Schematic diagram of Electrospray ionization source (6). 6Figure 5. Schematic diagram of quadrupole system (9) 7Figure 6. Schematic diagram of MALDI field-free drift region (6) 8Figure 7. Schematic

diagram of quadrupole ion-trap spectrometers (11) 9Figure 8. Anatomy of orbitrap mass analyser. 10Figure 9. Fluoroquinolones molecular structures. 17Figure 10. Microwave-assisted extraction (400 W) peak area percentages of the three analytes at different extraction times.. 27Figure 11. Microwav

e-assisted extraction optimization parameters. 28Figure 12. Chromatogram of three analytes extracted with MAE 400 W for 40 seconds in different solvent (90% methanol, 90% acetonitrile and 90% isopropanol). 29Figure 13. The overlaid chromatograms of plasma selectivity 30Figure 14. The selectivity

of plasma preparation.. 34Figure 15. Deming regression and Bland-Altman plot of drugs concentration in DPS and plasma. 39Figure 16. Sensor and switcher model of MSC (94) 45Figure 17. MSC balancing macrophage polarization into anti and pro inflammatory phenotypes (92) 46Figure 18. Exosome Biogene

sis 49Figure 19. Overview of exosomal study design 51Figure 20. Exosome isolation workflow. 55Figure 21. Exosome characterization workflow.. 56Figure 22. Exosome characterization 56Figure 23. Concentration and particle diameter of isolated exosomes. 57Figure 24. TEM visualization of the isolat

ed exosome.. 58Figure 25. A. SDS-PAGE of exosome derived protein. B. chromatogram of the selected fraction 59Figure 26. Venn diagram of identified proteins. In contrast to the two databases 60Figure 27. Cellular component for exosome samples 63Figure 28. Molecular functions for exosome samples

64Figure 29. Biological process for exosome samples 65Figure 30. Time scale of the four phases of wound healing process (141) 74