Hydraulic pressure的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

Hydraulic pressure的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Hailu, Getu,Varchola, Michal,Hlbocan, Peter寫的 Design of Hydrodynamic Machines: Pumps and Hydro-Turbines 和的 Water Hammer in Hydraulic Pipe Lines; Being a Theoretical and Experimental Investigation of the Rise or Fall in Pressure in a Pi都 可以從中找到所需的評價。

這兩本書分別來自 和所出版 。

國立陽明交通大學 機械工程系所 王啟川所指導 莫尼實的 超疏水性在結露狀況下對氣冷式熱交換器性能的影響 (2021),提出Hydraulic pressure關鍵因素是什麼,來自於熱交換器、超疏水性鰭片、凝結水脫落、熱傳、節能。

而第二篇論文逢甲大學 自動控制工程學系 洪三山所指導 林國維的 基於嵌入式技術實現類主動懸吊系統參數 即時調控之研究 (2021),提出因為有 類主動懸吊系統、空氣彈簧、比例閥液壓阻尼器、嵌入式系統的重點而找出了 Hydraulic pressure的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Hydraulic pressure,大家也想知道這些:

Design of Hydrodynamic Machines: Pumps and Hydro-Turbines

為了解決Hydraulic pressure的問題,作者Hailu, Getu,Varchola, Michal,Hlbocan, Peter 這樣論述:

Dr. Getu Hailu is currently Assistant Professor of Mechanical Engineering at the University of Alaska Anchorage. He has more than 20 years of experience in research and teaching. He designed, developed, and has been teaching turbomachinery courses at UAA at both the graduate and undergraduate level.

He is author/coauthor of more than 30 refereed publication. He is a member of ASME, ASHRAE, IBPSA and ACPA.Professor Michal Varchola has been teaching and conducting research on turbomachinery for more than 40 years. He has published 5 monographs, 4 textbooks, 4 books, and more than 150 articles in

journals and refereed conference proceedings. He has supervised 12 theses. He has been a lead investigator for numerous industry sponsored research. Prof. Varchola is a former chair of the Hydraulic and Pneumatic Equipment Machinery Department, Dean of Faculty of Mechanical Engineering and Vice Rec

tor of Slovak Technical University.Dr. Peter Hlbocan is currently a Simulation Specialist with EUSTREAM, a.s.. His main duties include CFD simulations of high-pressure natural gas piping systems with centrifugal compressors. He has ten years of experience in CFD flow modeling. He has worked on sever

al industry sponsored research projects focusing mainly on hydraulic performance improvements (modifications) and other hydraulic parameters. His work also includes CFD modeling of water pumps (radial, mixed-flow) and hydraulic turbines. He has also experience in teaching thermo-fluids courses and s

upervision of theses at Slovak University of Technology in Bratislava. He is author/coauthor of more than 30 refereed publication.

Hydraulic pressure進入發燒排行的影片

This video is about drum brake inspection, removal & refitting that had been conducted by students UTeM from third year BMMA student. Don't forget to like, share and subscribe if this content very helpful and useful. Thank you :D

0:00 - Introduction.
2:04 - Removal wheel cover from the vehicle.
2:21 - Method to jack the vehicle using Hydraulic Jack.
4:01 - Remove tire using Impact Gun.
5:43 - Removal drum brake from the vehicle.
8:18 - Explanation components of Drum Brake.
10:58 - Mechanism during hand brake being pulled.
11:06 - Removal component from Drum Brake.
15:45 - Introduction of Inspection.
16:30 - Inspection of Brake Lining Thickness.
18:48 - Inspection of Inside Diameter Drum Brake.
21:00 - Visual Inspection (Rub Test)
22:05 - Wheel Cylinder check up.
22:46 - Refitting components of Drum Brake.
24:12 - Explanation about pair of Brake Lining to reassemble into Drum Brakes.
25:48 - Continue Refitting components of Drum Brake.
31:13 - Release Pressure
33:54 - Continue Refitting components of Drum Brake.
34:57 - Put on tire back to the vehicle.
37:52 - Finish video

超疏水性在結露狀況下對氣冷式熱交換器性能的影響

為了解決Hydraulic pressure的問題,作者莫尼實 這樣論述:

濕空氣冷凝是熱管理系統中常見的過程,在冷凍空調循環中尤為重要,冷凝現象發生於當熱交換器,特別是蒸發器,在低於空氣露點的溫度下操作時。此現象將會導致鰭片側的冷凝液滴(膜)滯留(retention)與橋接(bridging),進而造成風機壓降與能耗的增加。本研究旨在開發一種超疏水熱交換器,通過其疏水特性,最大限度地減少冷凝水的滯留和橋接。本研究提出一種新型的超疏水性鰭片換熱器設計構想,採用傾斜鰭片排列以達到最小壓降和最大節能效果。本研究從熱傳與壓降性能的觀點切入,將新型超疏水性傾斜鰭片換熱器與其他換熱器作比較分析,分別為:超疏水水平鰭片換熱器、親水性傾斜鰭片換熱器、與親水性水平鰭片換熱器。此外,

本研究藉由改變不同的操作條件,如:進氣溫度、相對濕度和鰭片間距,對這四種換熱器進行性能測試。親水和超疏水換熱器中分別以膜狀冷凝和滴狀冷凝模式為主。由於其表面的高潤濕性,親水換熱器會有較大的液滴脫落直徑。相比之下,超疏水換熱器中發生的 Cassie-Baxter 液滴模式,促使了較小的液滴脫落直徑。本研究建立了一個力平衡模型來分析液滴脫落直徑,模型參數包括了表面張力、慣性力與重力對液滴的影響。本研究基於韋伯數(We)與邦德數(Bo)與液滴脫落直徑,引入了一個新的無因次參數( ),該無因次參數 可預測表面的凝結水脫落能力,在給定的鰭片間距下, 越小代表凝結水脫落能力越好。研究結果表明,滴狀冷凝的

超疏水換熱器在濕空氣下的冷凝熱傳性能相較膜狀冷凝的親水性換熱器並未有顯著的提升,此結果可歸因於非凝結性氣體效應。然而,在壓降方面,超疏水性換熱器與親水性換熱器相比,可帶來高達70%的壓降降低,大幅提升節能效果。壓降的降低歸因於聚結誘發的液滴跳躍現象,使得冷凝水連續脫落。

Water Hammer in Hydraulic Pipe Lines; Being a Theoretical and Experimental Investigation of the Rise or Fall in Pressure in a Pi

為了解決Hydraulic pressure的問題,作者 這樣論述:

基於嵌入式技術實現類主動懸吊系統參數 即時調控之研究

為了解決Hydraulic pressure的問題,作者林國維 這樣論述:

傳統汽車懸吊系統,主要是由圈狀彈簧及液壓阻尼器所組成,而彈性係數K及阻尼係數C均為定值,因而傳統懸吊系統無法因應不同的路面狀況調整懸吊系統。由於現今道路品質參差不齊,路面坑洞、補釘及人孔蓋眾多,加上多雨的氣候使行車時的舒適性及操控性降低。 因此本研究提出了應用嵌入式技術結合路面影像判斷並控制類主動懸吊系統。本研究類主動懸吊系統由空氣彈簧、比例閥液壓阻尼器取代傳統懸吊系統,並加上多種感測器組成。空氣彈簧由微控制器控制電磁閥導通以改變囊體內部氣體壓力使其改變彈性係數K值亦能產生位移進而改變底盤高度,比例閥液壓阻尼由微控制器輸出脈波寬度調變(Pulse-width modulation, PWM

)至阻尼器驅動電路,再由驅動電路驅動阻尼器比例閥,比例閥阻尼器以改變內部油路通道,可調整阻尼係數C,以達到抑制車身震動之目的。對不同的不平整路面類型如坑洞、減速墊、人孔蓋等,以控制器區域網路(Controller Area Network, CAN bus)通訊傳送路面資訊至車輛嵌入式系統,再由控制決策運算,依對應的條件調整至對應的空氣彈簧係數,同時運用類神經演算法計算最佳阻尼係數,讓系統能根據當下道路狀況即時調整懸吊系統參數,以達到更好的行車舒適性及操控性。 最後以實車動態測試,探討懸吊系統與車輛動態特性,進而優化控制決策參數,以達到最佳行車舒適度及給予價最佳的行車安全。