Inexpensive的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

Inexpensive的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 Introduction to Development Engineering: A Framework with Applications from the Field 和DK的 Dinosaur Lab: Exciting Projects for Exploring the Prehistoric World都 可以從中找到所需的評價。

另外網站Inexpensive - Definition for English-Language Learners from ...也說明:Definition of inexpensive written for English Language Learners from the Merriam-Webster Learner's Dictionary with audio pronunciations, usage examples, ...

這兩本書分別來自 和所出版 。

國立陽明交通大學 材料科學與工程學系所 柯富祥所指導 杜博瑋的 磁敏釋放控制微膠囊並應用於金屬離子螢光感測 (2021),提出Inexpensive關鍵因素是什麼,來自於微膠囊、雙乳化、釋放控制、熒光感測、磁性奈米顆粒。

而第二篇論文臺北醫學大學 藥學系碩士班 謝尚逸所指導 馬梓軒的 化學合成癌症相關之醣硫化骨橋蛋白 (2021),提出因為有 骨橋蛋白、癌症、疫苗、腫瘤、胜肽、翻譯後修飾、O-醣基化、酪氨酸硫酸化的重點而找出了 Inexpensive的解答。

最後網站Inexpensive Gift Ideas For Students For Holidays則補充:Ring in the holidays with inexpensive gift ideas for students. Plus, celebrate birthdays, reward achievements, or stock a prize box.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Inexpensive,大家也想知道這些:

Introduction to Development Engineering: A Framework with Applications from the Field

為了解決Inexpensive的問題,作者 這樣論述:

Ashok J. Gadgil is Faculty Senior Scientist and former Director of the Energy and Environmental Technologies Division at Lawrence Berkeley National Laboratory. He is also Professor of Civil and Environmental Engineering at the University of California, Berkeley. He specializes in heat transfer, flui

d dynamics, and technology design for development. He also has substantial experience in technical, economic, and policy research on energy efficiency and its implementation - particularly in developing countries. Two of his best-known technologies for the developing-world are "UV Waterworks" (a sim

ple, effective, and inexpensive water disinfection system), and the Berkeley-Darfur Stove (a low-cost stove that saves fuelwood in internally displaced person’s camps in Darfur). In early 1990s, he analyzed the potential for large utility-sponsored projects to promote energy efficient electric light

ing in poor households in developing countries, then teamed up with others to design and demonstrate such projects. These have become commonplace in dozens of developing countries since 2000 onward, saving billions of dollars annually to their economies. Gadgil holds a Ph.D. in Physics from the Univ

ersity of California, Berkeley and an M.Sc. in Physics from Indian Institute of Technology, Kanpur.Temina Madon is Executive Director of the Center for Effective Global Action (CEGA), a research network headquartered at UC Berkeley that focuses on the design and rigorous evaluation of anti-poverty p

olicies, services, and technologies. In this role, Madon oversees the Development Impact Lab, a USAID-funded consortium of universities leveraging science and engineering to accelerate global economic development. She also spearheads multiple initiatives to build scientific capacity in developing co

untries, particularly in the areas of economics and public health. She has served as an advisor to the World Health Organization on implementation research and has consulted for the World Bank, the International Initiative for Impact Evaluation, and the Bill and Melinda Gates Foundation. Earlier, Ma

don served as founding executive director of the Center for Emerging and Neglected Diseases at UC Berkeley. From 2006 to 2008, she was the science policy analyst for the Fogarty International Center at the National Institutes of Health (NIH). Prior to this, she led a portfolio of global health initi

atives for the U.S. Senate HELP Committee (under the leadership of Senator Edward Kennedy) as a AAAS Science and Technology Policy Fellow. She received a PhD in 2004 from UC Berkeley and a BS in 1998 from MIT.Michael Callen is professor of economics and strategic management at the Rady School of Man

agement at University of California, San Diego. He uses experiments to identify ways to address accountability and service delivery failures in the public sector, working primarily in Afghanistan and in Pakistan. His primary interests are political economy, development economics, and experimental ec

onomics. Before coming to the Rady School, Callen was an Assistant Professor of Public Policy at the Harvard Kennedy School and an Assistant Professor of Political Science at the University of California, Los Angeles. As a post doc, Callen was a visiting faculty member at the University of Californi

a, Berkeley Center for Effective Global Action and the UC San Diego Institute on Global Conflict and Cooperation. Callen has received research grants from the International Growth Center (IGC), South Asia Institute, Harvard University, Department for International Development, Consortium for Financi

al Systems and Poverty, Policy Design and Evaluation Laboratory, Center for Effective Global Action and the Development Innovation Lab (UC Berkeley). He also won the Innovate Award from the Development Innovation Lab from UC Berkeley. Callen earned his Ph.D. in Economics from the University of Calif

ornia, San Diego and his B.Sc. in Econometrics and Mathematical Economics from the London School of Economics and Political Science.Catherine Wolfram is the Cora Jane Flood Professor of Business Administration at the Haas School of Business, UC Berkeley. She is also Faculty Director of the Energy In

stitute at Haas and of The E2e Project, a research organization focused on energy efficiency. She is program director of the Environmental and Energy Economics program at the National Bureau of Economic Research and an affiliated faculty member in the Agriculture and Resource Economics department an

d the Energy and Resources Group at Berkeley. Wolfram has published extensively on the economics of energy markets. She has studied the electricity industry around the world and has analyzed the effects of environmental regulation, including climate change mitigation policies, on the energy sector.

She is currently implementing several randomized controlled trials to evaluate energy programs in the U.S., Kenya and India. She received a PhD in economics from MIT in 1996 and an AB from Harvard in 1989. Before joining the faculty at UC Berkeley, she was an assistant professor of economics at Harv

ard.

Inexpensive進入發燒排行的影片

Pratunam market is the largest clothing market in Bangkok.
Pratunam Market has some large malls such as The Platinum Fashion Mall and Indora Square, but it also has countless smaller stores.
Among them, there are many stores around Bayoke Gallery that sell inexpensive clothes.
Most of the shops sell clothes for young women, but there are also stores that sell clothes and suits for older people.

磁敏釋放控制微膠囊並應用於金屬離子螢光感測

為了解決Inexpensive的問題,作者杜博瑋 這樣論述:

微膠囊化技術因其在材料科學中的結構和功能性提供眾多優點而近年來受到廣泛的 關注。超分子化學是一門關注分子間非共價鍵作用力的化學學科,從中延伸出了很多 重要的概念和研究方向,例如分子螢光光探針,其螢光特性由其自身的分子結構決定, 但也容易受到環境因素的影響。在該方向上,本論文進行了詳細的研究,解釋了微膠 囊化技術與超分子化學完美的平衡組合,使其具有更好的穩定性和新穎的應用。首先 我們導入超分子化學概念通過一鍋反應合成的芘基衍生物,2­((芘­1­亞甲基) 胺) 乙醇奈 米顆粒,和通過改質的磁性奈米顆粒用作觸發釋放元素通過雙乳化溶劑蒸發法包覆在 聚己內酯聚合物基質構建的微型膠囊中。用於檢測三價陽

離子的開關感測器通過新型 的螢光響應與磁場控制釋放機制被很好地整合在整個系統中,並且在外部震盪磁場下 可以有效地發生熱能與動能的轉換。(1) 通過一鍋法成功合成了具有聚集誘導光增強特性和三價陽離子感測能力的芘基衍 生物螢光探針。我們使用重結晶技術來提高該螢光探針化合物的純度,純度評估由螢 光光譜的半高寬的值確定。通過核磁共振光譜,紫外可見光光譜,螢光光譜和熱重分 析研究了選擇性螢光探針的特性。其聚集誘導光增強特性和對於三價陽離子 (鐵/鋁/鉻) 的選擇開關特性都表現完整且性能良好。在使用這種螢光探針作為核心材料被封裝在 微膠囊中之前,本節充分地研究了其基本特性,穩定的紫外可見光及螢光光譜的結果

是在溶劑 (乙腈) 和水 (100:900; 體積比) 的比例下進行的,強力的激發光在 505 nm,也 分別顯示出其對於三價鐵/鋁/鉻金屬陽離子優異的選擇性。(2) 為了成功通過外部震盪磁場觸發微膠囊的破裂,我們將利用共沉澱法合成並通過 檸檬酸修飾以達到避免團聚現象並提高其穩定性的磁性奈米顆粒嵌入聚合物基質中。 通過由動態光散射所測量到的粒徑分佈和界面電位以及掃描電子顯微鏡觀察到的圖 像,顯示出經過修飾的磁性奈米顆粒具有良好的分散特性和相對未修飾顆粒較小的粒 徑分佈。經過修飾的磁性奈米顆粒和選擇性熒光探針分子通過雙乳化結合溶劑蒸發法 成功封裝在微膠囊中,並通過光學顯微鏡,掃描電子顯微鏡,動

態光散射儀,熱重分i析儀,X 光散射儀,和核磁共振光譜儀對其表面形貌和特征進行了全面的研究。其結 果分別表明被修飾的磁性奈米顆粒和選擇性熒光探針確實有被微膠囊封裝在內,與此 同時,本節還深入討論了殼材料的高分子量的大小,雙乳化的內部水相濃度,以及在 分離微膠囊的離心過程中的離心速率的選擇,對合成微膠囊形貌以及包封效率的影響。 我們發現當聚合物外殼採用的分子量為 80,000 的聚己內酯時,所合成的微膠囊比其他 兩種較低分子量的顯示出更好的包覆效率和更加均勻的形狀,這主要是由於採用較高 分子量的高分子時,其油相在膠囊雙乳化狀態下的固化過程可以提供更好的穩定性。 此外,將溶解在乙腈中 10 mM

的熒光探針化合物作為內部水相的濃度與其他兩種濃度 (0.1 mM, 1 mM) 相比之下,也證明該濃度下所合成的微膠囊具有更好的均勻性和包覆 效率,因為較低濃度的內部水相會導致膠囊外殼內外滲透壓的不穩定。令人驚訝的是, 我們還發現在分離微膠囊的過程中,較高的離心速率會導致微膠囊的多孔性結構的產 生,這種現象可以通過調整較低的離心速率來消除。該策略同時也為未來開發新型多 孔性結構微膠囊的設計提供了一種新的途徑。在本節中,包覆了被修飾後的磁性奈米 顆粒和選擇性螢光探針的微膠囊的釋放行為和感測滴定分別以六十攝氏度的水浴加熱, 機械破壞,和超聲波粉碎的方式模擬其在磁場破裂的條件下進行,並且分別在不同狀

態下完美地測試了其結果。(3) 最後我們巧妙地設計了通過使用外部震盪磁場的方式來觸發芘基席夫鹼螢光 探針在微膠囊中的新型磁感應釋放機制。為了控制膠囊外殼的破裂,分散在乙腈/水 (900:100; 體積比) 中新合成的磁敏微膠囊通過直接感應加熱暴露在高頻磁場下。這些微 膠囊被成功觸發破裂釋放出所包覆的選擇性螢光探針,表現出優異的聚集誘導光增強 特性,和良好的選擇性開關螢光信號用於檢測三價金屬陽離子 (鐵/鋁/鉻)。被釋放的螢 光探針的檢測極限為:2.8602 × 10−6 M (三價鋁離子), 1.5744 × 10−6 M (三價鉻離子),和 1.8988 × 10−6 M (三價鐵離子)。

該感測器平台也表現出優異的精確度和再現性,如變 異係數所示 (三價鐵離子 ≤ 2.79%, 三價鉻離子 ≤ 2.79%, 三價鋁離子 ≤ 3.76%),各金屬離 子的回收率分別為:96.5­98.7% (三價鐵離子), 96.7­99.4% (三價鉻離子), 和 94.7­98.9% (三價鋁離子)。以上結果也充分說明了本文所述的控制釋放平台對於三價金屬陽離子 (鐵/鋁/鉻) 活性和實際樣品中的偵測,在未來環境監測甚至生物醫學方面的應用有一定 的價值和潛力。

Dinosaur Lab: Exciting Projects for Exploring the Prehistoric World

為了解決Inexpensive的問題,作者DK 這樣論述:

Step back in time and discover the wonderful world of dinosaurs!Whether you’re a dinosaur fan or just simply enjoy practical hands-on projects, this dynamic dinosaur book combines creativity with a prehistoric twist. Each of the super-fun make-and-do projects in this book comes with simple step-b

y-step photographs and instructions that will inspire imaginative minds and bring the dinosaur world to life! Join the journey back to prehistoric times and explore: - 24 hands-on projects that appeal to young readers aged 9+ - All materials used are inexpensive and easy-to-find- Crystal-clear instr

uctions are easy-to-follow- Clear photography shows how to make each project step-by-step Perfect for kids who are interested in STEM (science, technology, engineering, and maths), SI Dinosaur Activity Lab features activities that cover many aspects of prehistoric life, from the evolution of dinosau

rs to what might have caused them to die out. You’ll combine science and maths with art and craft by making your own dinosaur fossils, constructing a 3D diorama to learn about dinosaur habitats, designing a fearsome Tyrannosaurus mask, hatching your own mini dinosaur out of a bath bomb, and even cre

ating a meteorite impact experiment to find out how dinosaurs may have become extinct! Throughout the book there are information boxes with incredible facts about prehistoric life and panels to explain how the skills you’ve learned are used in the real world. SI Dinosaur Activity Lab is perfect for

children aged 9 + with an interest in dinosaurs, the prehistoric world and geology. The ideal package for creative kids who are interested in making dinosaurs roar back to life, discover how to make dinosaur-feet pen pots, dinosaur egg bath bombs and so much more! Whether you’re a dinosaur fan or ju

st simply enjoy practical hands-on projects, this dynamic dinosaur book combines creativity with a prehistoric twist. Each of the super-fun make-and-do projects in this book comes with simple step-by-step photographs and instructions that will inspire imaginative minds and bring the dinosaur world t

o life!

化學合成癌症相關之醣硫化骨橋蛋白

為了解決Inexpensive的問題,作者馬梓軒 這樣論述:

This thesis aims to study the structure and function roles of sulfation and O-glycosylation on the peptides derived from a tumor-associated protein, osteopontin (OPN), in order to provide a fundamental knowledge for potential cancer vaccine development. Chapter 2 is dedicated to the method develop

ment of the synthesis for a library of post-transitionally modified tumor-associated osteopontin peptide antigens, using divergent Fmoc-based solid-phase peptide synthesis (Fmoc-SPPS) with a cassette strategy. Of these synthetic peptides, the one with the highest integrin binding efficiency will be

selected as a cancer vaccine candidate. Chapter 3 is devoted to the synthesis of four glyco(sulfo)peptides, each bearing a thrombin cleavable fluorescent tag. For making it easier to synthesis, we performed an on-resin installation of a fluorescent tag: 7-amino-4-aminocoumarylmethyl coumarin (ACC),

on the C-terminal of the peptides. The products were used as substrates for the thrombin assay, and we envisioned that such a library would reveal the roles of sulfation and O-glycosylation to the thrombin-osteopontin interactions for the first time. The preliminary results of these peptides against

thrombin assay confirmed both tyrosine sulfation and O-glycosylation gave detrimental effects on the thrombin amidolytic activity against synthetic osteopontin peptides.