Mac 深度學習的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

Mac 深度學習的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦MoriteruIshida寫的 《演算法、深度學習、程式設計入門教室》精選套書(演算法圖鑑+深度學習入門教室+Python入門教室) 和李金洪的 極詳細+超深入:最新版TensorFlow 1.x/2.x完整工程實作都 可以從中找到所需的評價。

這兩本書分別來自臉譜 和深智數位所出版 。

國立陽明交通大學 電子研究所 張添烜所指導 江宇翔的 應用於物件偵測與關鍵字辨識之強健記憶體內運算設計 (2021),提出Mac 深度學習關鍵因素是什麼,來自於記憶體內運算、物件偵測、關鍵字辨識、模型個人化。

而第二篇論文國立臺灣科技大學 電子工程系 陳永耀所指導 孫美雪的 基於深度學習網路之輪廓一致性圖像轉換 (2021),提出因為有 Image to Image Translation、Contour Consistency Network、Inconsistency Problem、Attention Feature Map的重點而找出了 Mac 深度學習的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Mac 深度學習,大家也想知道這些:

《演算法、深度學習、程式設計入門教室》精選套書(演算法圖鑑+深度學習入門教室+Python入門教室)

為了解決Mac 深度學習的問題,作者MoriteruIshida 這樣論述:

 《演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用全圖解》 ★日本超人氣演算法學習書 ★逾50萬次下載量,「Apple年度最佳APP」書籍化! ★隨書附贈獨家贈品「圖形搜尋和排序圖解記憶表」 ★★ 讀再多文字解說都看不懂?沒關係,全部畫給你看,一次弄懂演算法到底是什麼!★★ ●直觀理解,從基礎開始學習,一用就上手的演算法專書! ●全圖像化step by step,完整拆解制霸AI時代的演算法精髓! ●詳解演算法的奧妙、執行效率、優缺點,活化思維,做出最佳決斷! 【專業審訂】 謝孫源  成功大學資訊工程系特聘教授兼研發長   【專

家學者好評推薦】 李忠謀  國立臺灣師範大學資訊工程系教授、國際資訊奧林匹亞競賽主席 黃建庭  高中資訊科技概論教師 趙坤茂  臺灣大學資訊工程學系教授 鄭國威  PanSci泛科學總編輯 【高中資訊社團好評推薦】 北一女中資訊研習社 台中一中第35屆電腦資訊研究社 台南女中資訊研究社 成功高中電子計算機研習社 建國中學資訊社 高雄女中資訊社 新竹高中軟體研究社CSDC 臺南一中資訊社 █ 演算法時代來了! 現今我們的世界已離不開演算法,從線上搜尋、社群交友、法院判案、醫學診斷、金融運作、大腦決策到人工智慧的未來,越了解演算法,越可能掌控權力,成為時代的贏家。有些演算法對我們有益、有些

有用,有些則可能使我們陷入大麻煩,但我們對這些演算法所知極少。 不管用哪種程式語言編寫程式,演算法都是不可或缺的,不過如果認為只有學電腦的人才要了解演算法,那就太可惜了。演算法其實是一連串解決問題的邏輯步驟,只要熟悉這些步驟和運用方式,每個人都能設計自己的演算法並應用於各種不同領域。學習演算法正是建構嚴謹思維和幫助做出最佳判斷的訓練。 █ 演算法的第一本書,從基礎開始學習! 演算法是用以執行計算或完成作業的程序,可以想像成料理食譜,如果做出某種料理的步驟是食譜,那麼用電腦解出特定問題的步驟就是演算法了。然而,食譜與演算法的決定性差異,在於演算法非常嚴謹。相較於食譜有很多概略的描述,演算法

的所有步驟都用數學方式表現,沒有模糊地帶。 本書蒐羅介紹26種基本的演算法和7種資料結構,貨真價實完全圖解。每一個步驟都以圖片和文字詳細說明,拆解具體演算過程,逐步建立邏輯概念,輕鬆進入演算法的世界。 書中解說的演算法範疇包括「排序」、「陣列搜尋」、「圖形搜尋」、「安全性演算法」、「分群」,以及「網頁排名」等各種廣泛使用的基礎演算法。不用艱澀的專有名詞,步步口語分解,完全沒有概念的人也能漸進學習。 ―――― 《深度學習入門教室:6堂基礎課程+Python實作練習,Deep Learning、人工智慧、機器學習的理論和應用全圖解》 ――――超人氣暢銷書《演算法圖鑑》姊妹作,機器學習初學

者最佳入門書!――――   人工智慧時代關鍵能力!深度學習深在哪裡? 強化運算思維,建構邏輯概念,一次弄懂深度學習活用之道!   ★ 精闢剖析深度學習發展史,詳述機器學習的基礎知識! ★ 完整解說熱門程式語言第一名Python的環境建構和基本語法! ★ 圖像化示範TensorFlow和Keras的安裝,開發AI必學必讀! ★ 介紹類神經網路的基本思考方式和程式範例,逐步加深理解! ★ 說明使用卷積神經網路的影像辨識演算法,進一步強化學習! ★ 全面了解提升深度學習準確度的演算法,掌握應用的訣竅!   █ 迎接運算時代,紮實學好Deep Learning的要點!   本書以想試著開始使用時下流

行的深度學習之讀者為對象,從理論到實踐進行了統整。書中詳細說明深度學習基礎理論的類神經網路,以及相關的必要數學知識,同時講解程式原始碼,以實際動手操作的方式來幫助理解。   坊間已經有眾多的機器學習與深度學習相關書籍,但類神經網路理論的學習門檻相當高、深度學習應用程式框架入門難度深、不容易掌握進一步應用的要領等等,常令初學者無法看清活用深度學習的探索之路。   本書首先介紹類神經網路的概念,緊接著說明如何使用應用程式框架進行深度學習,讓學習者初步感受這個領域。接下來介紹各種應用,大量運用範例來說明。在此之後,對於想進一步學習理論的讀者,介紹機器學習的學習方式;對於想挑戰進階深度學習應用的讀者,

說明演算法等等。   █ 豐富圖解一目瞭然,「文字辨識」、「影像辨識」、「自然語言處理」實際演練!   本書的目標是幫助讀者了解什麼是深度學習、什麼是AI之後,能夠實際動手實作,期使讀者不致一知半解,不會只是執行範例卻不知接下來能做什麼,而能學會確實地判斷為了何種目的該使用何種應用程式框架,以及實際進行的步驟。   想挑戰AI開發的理工科學生、想更上一層樓的工程師、想了解深度學習基礎理論的人、使用TensorFlow和Keras嘗試實際安裝的人、想弄懂機器學習所需的數學的人,都能從本書平易的解說中學習到必要的知識。   【本書的架構】   ▌第1章:論及深度學習以及其背景的機器學習相關話題,解

析人工智慧(AI)的概念。   ▌第2章:說明Python的環境建構與深度學習所需函式庫的安裝方法,包括在Windows與Mac兩種環境上的說明,解說必需的基礎Python文法。   ▌第3章:藉由能以簡潔的敘述來使用多個函式庫的Keras實作深度學習,同時製作影像辨識的程式來體驗深度學習。進行導入Keras並公開發佈的熱門函式庫TensorFlow、數值運算函式庫與資料繪製函式庫等等的準備。   ▌第4章:解說類神經網路的理論,同時實際試著使用名為MNIST的文字辨識範例程式來加深理解。   ▌第5章:說明使用卷積神經網路的影像辨識演算法。   ▌第6章:介紹提升深度學習準確度的演算法、自然

語言處理等,用於影像辨識以外的範例程式。 ―――― 《Python入門教室:8堂基礎課程+程式範例練習,一次學會Python的原理概念、基本語法、實作應用》 ――――――――超人氣暢銷書《演算法圖鑑》、《深度學習入門教室》系列作――――――――   熱門程式語言第1名,日本暢銷Python學習入門書! 邊做邊學,實際操作練習,享受程式設計的樂趣!   ★ 全彩圖文解說,給程式設計新手的最佳指南! ★ 遊戲製作•GUI設計•模組活用,可從網頁下載範例! ★ 解說書寫格式,詳述顯示文字、數值、空白、縮排的基本規則! ★ 剖析組成程式的6大元素,逐步建構基本語法並善用函式! ★ 學習使用

Python顯示視窗的方法,建立圖形介面設計遊戲的外觀!   █  AI時代必學的基礎工具,第一次設計程式就上手!   以往的程式設計,只是輕鬆當成興趣即可開始,但這十年間逐漸變得複雜。「程式設計真有趣!如果能讓更多人開始接觸程式設計就好了!」要感受程式設計的有趣之處,最重要的是能夠立刻動手試試,而且能立即看到結果。   最符合這項要件的,就是近年來熱門程式語言第一名「Python」。   使用Python,只需要輸入指令就能立刻執行。可用來擴充Python、稱為「模組」的功能非常豐富,對於視窗的顯示和製作PDF等,也能以很簡短的程式實現。   本書活用Python這樣的優點,簡單易懂地說明它

的基本語法之後,檢視「製作猜數字遊戲」、「在視窗中移動圓形、矩形和三角形」、「使用PDF製作橫布條」等實際範例,逐步學習。   █  豐富圖解一目瞭然,「匯入方式」、「書寫格式」、「運作處理機制」實際演練!   閱讀本書時,可下載取得範例程式,一邊動手練習,一邊看著實際運作的畫面來學習。   此外,書中利用各式各樣的範例激發好奇心,鼓勵讀者發揮想像力,嘗試改良程式,進一步加深理解。舉例來說,對於影像辨識和人工智慧等等,也能以Python進行程式設計。   本書的目標是希望成為學習者開始進行程式設計的契機,感受程式設計的樂趣,打好紮實的基礎,開啟美好充實的程式設計生活。   █  本書的架構  

▌ 第1章:說明程式的作用,製作程式需要什麼、該學些什麼,精闢列舉正確操作的祕訣。   ▌ 第2章:說明執行Python程式的軟體安裝方法,了解執行指令和避免出現錯誤的基本知識。   ▌ 第3章:說明使用Python撰寫程式須遵守的規定,學習文字、數值、空白的用法等基本規則。   ▌ 第4章:學習程式語言裡的基本功能,整理說明實際應用的部分,藉由將這些功能組合起來,逐步製作出程式。   ▌ 第5章:製作「Hit & Blow」猜數字遊戲,從簡單的地方開始打好基礎,掌握應用的訣竅。   ▌ 第6章:藉由以視窗呈現「Hit & Blow」猜數字遊戲,讓它成為圖形化的成品,更像個遊

戲。   ▌ 第7章:一邊撰寫於畫面上移動圓形的程式,漸進學習「類別」與「物件」的基本知識。   ▌ 第8章:學習使用PDF製作「橫布條」的方法,總複習學習成果,使用擴充模組挑戰實用的程式設計。  

Mac 深度學習進入發燒排行的影片

來實測MBP外接顯卡吧!究竟4K剪輯打遊戲能不能變順呢?

如果你跟我一樣,所有事情都用一台筆電或MBP解決,遲早有一天會遇到相同的問題,那就是顯卡不夠用!有時候其實是散熱問題導致顯卡效能無法完整發揮,這時就會需要用到外接顯卡eGPU,讓顯示和繪圖的工作交給外接顯卡來做,減輕筆電負擔。

・測試電腦:
MBP M1 2021年 13 吋 標配
MBP 2019年 15 吋 頂規

・測試顯卡:
GIGABYTE GTX 950
憾訊 RX 580
MSI RX 6600 XT

0:00 MBP外接顯卡 Intro
0:42 外接顯卡盒是什麼
1:37 顯卡等級&為什麼要外接顯卡
2:56 MBP外接顯卡實戰教學
4:29 MBP外接顯卡支援度困難重重
4:52 MBP M1外接顯卡相容實測
5:34 MBP Intel外接顯卡相容實測
7:32 MBP外接顯卡心得報告

#M1 #外接顯卡 #eGPU

👉 學習YouTube經營:https://pse.is/3a49jb
👉器材旅人毛巾FB:https://www.facebook.com/MouchingBlog/
👉毛巾的Instagram:mouching1123 (https://www.instagram.com/mouching1123/)
👉合作邀約、有話想跟毛巾說:[email protected]

👉毛巾的熱門影片
我怎麼成為工程師?https://youtu.be/v-OWBeuqNTw
分享我在Google工作學到的菁英工作法!https://youtu.be/_OXKszvJE00
2021投資績效大公開! 投資慘賠數十萬後的理財學習 https://youtu.be/Y4GNSVKwVO4
工程師兼差YouTuber能賺多少錢?https://youtu.be/YC4ihM8BrXk
我的婚紗在韓國拍!https://youtu.be/T43PSm9x92w
悲劇的成田機場逃亡記:https://youtu.be/3OtoWvHDA9U
------------------------------------------------------------------------------------------------
👉毛巾的結婚準備系列
虹夕諾雅蜜月!https://youtu.be/hqhiMDMmM58
工程師怎麼挑西裝?https://youtu.be/7v1UxiV247c
韓國剪頭髮會變成歐巴?https://youtu.be/yOXahX5_hFs
工程師求婚記!https://youtu.be/H4H_dUFJpRs

👉毛巾的各種旅拍影片
東京萬豪酒店過10週年!https://youtu.be/6mEY60zgx4Q
[日本] 天氣之子聖地巡禮!https://youtu.be/u2JlXEYxHT4
[紐西蘭] 紐西蘭最好吃的漢堡?https://youtu.be/HQ8xhswpkiM
[馬來西亞] 吉隆坡深度Vlog!https://youtu.be/B_LWWCqJZHE
[沙巴] 兩分鐘看完沙巴五天行程!https://youtu.be/S9R9nyWoKOE
[韓國] 樂天超市首爾站店:https://youtu.be/A1qH3l6Egco

👉毛巾的器材Review影片
Podcast錄音系統開箱!https://youtu.be/d5BC_lMZoNU
Gopro Hero 8 全4K拍攝實測!https://youtu.be/cAEVY72dUvM
Sony RX100M7適合Youtuber新手嗎?https://youtu.be/F0DQcji7NZw
Insta360開箱紅系諾雅:https://youtu.be/hqhiMDMmM58
最潮的耳罩式藍牙耳機?Skullcandy Crusher開箱!https://youtu.be/H0WbL-IIzQk

應用於物件偵測與關鍵字辨識之強健記憶體內運算設計

為了解決Mac 深度學習的問題,作者江宇翔 這樣論述:

近年來,由於不同的應用都能夠藉由和深度學習的結合而達到更好的結果,像是物件偵測、自然語言處理以及圖像辨識,深度學習在終端設備上的發展越來越廣泛。為了應付深度學習模型的龐大資料搬移量,記憶體內運算的技術也在近年來蓬勃發展,不同於傳統的范紐曼架構,記憶體內運算使用類比域的計算使儲存設備也同樣具備運算的能力。儘管記憶體內運算具有降低資料搬移量的優點,比起純數位的設計,在類比域進行計算容易受到非理想效應的影響,包括元件本身或是周邊電路的誤差,這會造成模型災難性的失敗。此篇論文在兩種不同的應用領域針對記憶體內運算進行強健的模型設計及硬體實現。在電阻式記憶體內運算的物件偵測應用當中,我們將重點放在改善模

型對於非理想效應的容忍度。首先,為了降低元件誤差的影響,我們將原本的二值化權重網路改變為三值化權重網路以提高電阻式記憶體中高阻態元件的數量,同時能夠直接使用正權重及負權重位元線上的電流值進行比較而不使用參考位元線作為基準。其次,為了避免使用高精度的正規化偏差值以及所導致的大量低阻態元件佈署,我們選擇將網路中的批次正規化層移除。最後,我們將運算從分次的電流累加運算改為一次性的運算,這能夠將電路中非線性的影響降到最低同時避免使用類比域的累加器。相較於之前的模型會受到這些非理想效應的嚴重影響導致模型無法運作,我們在考慮完整的元件特性誤差,周邊電路誤差以及硬體限制之下,於IVS 3cls中做測試,能夠

將平均精確度下降控制在7.06\%,在重新訓練模型後能更進一步將平均精確度下降的值降低到3.85\%。在靜態隨機存取記憶體內運算的關鍵字辨識應用當中,雖然非理想效應的影響相對較小,但是仍然需要針對周邊電路的誤差進行偏壓佈署補償,在經過補償及微調訓練後,在Google Speech Command Dataset上能夠將準確率下降控制在1.07\%。另外,由於語音訊號會因為不同使用者的資料而有大量的差異,我們提出了在終端設備上進行模型的個人化訓練以提高模型在小部分使用者的準確率,在終端設備的模型訓練需要考量到硬體精度的問題,我們針對這些問題進行誤差縮放和小梯度累積以達到和理想的模型訓練相當的結果

。在後佈局模擬的結果中,這個設計在推論方面相較於現有的成果能夠有更高的能源效率,達到68TOPS/W,同時也因為模型個人化的功能而有更廣泛的應用。

極詳細+超深入:最新版TensorFlow 1.x/2.x完整工程實作

為了解決Mac 深度學習的問題,作者李金洪 這樣論述:

TensorFlow 是目前使用最廣泛的機器學習架構,滿足了廣大使用者的需求。如今TensorFlow 已經更新到2.x 版本,具有更強的便利性。 本書透過大量的實例說明在TensorFlow 架構上實現人工智慧的技術,相容TensorFlow 1.x 與TensorFlow 2.x 版本,覆蓋多種開發場景。   ◎ 詳盡闡述tensorflow 1.x/2.x完整內容   ◎ 75個實作專案,包含最接近工業 / 商業用的典範      ◎ 由淺入深的完整解說,徹底體會TensorFlow之美   史上強大的AI框架Tensorflow 2.X版終於出來了。   在綜合PyTorch

的動態圖架構和併入高階API Keras之後,Tensorflow又重回AI框架最炙手可熱的明星之一。   本書是針對已經有Tensorflow基礎的讀者,幫助讀者具備基礎的深度學習知識之後,更強化自身的功力。不再拘泥於簡單的CNN、MNIST、RNN等太基礎的內容。   全書重點包括:   ► 75個工業及商用專案的完整實作   ►在Windows/Linux下安裝Anaconda及GPU、CUDNN的完整介紹   ►大量Transfer Learning的預載入模型說明   ►Tensorflow的專屬資料集格式   ►TF-Hub retrain或是fine-tune完整的預載入模型

  ►利用tf.estimator及tf.keras訓練模型的完整過程   ►用Tensorflow做離散及連續資料的特徵工程   ►不再只是單純的CNN,用膠囊網路做更準確的圖形辨識   ►不只RNN,還有GRU及Attention機制、SRU、QRNN及Transformer機制   ►自己動手做YOLOV3 Darknet   ►最完整的Normalization說明,包括Batch Norm、Switchable Norm   ►GAN大全,包括DeblurGAN及AttGAN   ►CS612照片加工的AI基礎   ►製作Tensorflow的模型完整說明   ►在樹莓派、iPho

ne、Android上佈署Tensorflow的模型 本書特色   1. 相容TensorFlow 1.x 與2.x 版本,提供了大量的程式設計經驗   兼顧TensorFlow 1.x 與2.x 兩個版本,列出了如何將TensorFlow 1.x 程式升級為TensorFlow 2.x 可用的程式。   2. 覆蓋TensorFlow 的大量介面   由於TensorFlow 的程式反覆運算速度太快,有些介面的搭配文件並不是很全。作者花了大量的時間與精力,對一些實用介面的使用方法進行摸索與整理,並將這些方法寫到書中。   3. 提供高度可重用程式,公開了大量的商用程式片段   本書實

例中的程式大多都來自程式醫生工作室的商業專案,這些程式的便利性、穩定性、再使用性都很強。讀者可以將這些程式分析出來直接用在自己的專案中,加快開發進度。   4. 書中的實戰案例可應用於真實場景   書中大部分實例都是目前應用非常廣泛的通用工作,包含圖片分類、目標識別、像素分割、文字分類、語音合成等多個方向。讀者可以在書中介紹的模型的基礎上,利用自己的業務資料集快速實現AI 功能。   5. 從專案角度出發,覆蓋專案開發全場景   本書以專案實作為目標,全面覆蓋開發實際AI 專案中所有關的知識,並全部配有實例,包含開發資料集、訓練模型、特徵工程、開發模型、保護模型檔案、模型防禦、服務端和終端

的模型部署。其中,特徵工程部分全面說明了TensorFlow 中的特徵列介面。該介面可以使資料在特徵處理階段就以圖的方式進行加工,進一步確保在訓練場景下和使用場景下模型的輸入統一。   6. 提供大量前端論文連結位址,便於讀者進一步深入學習   本書使用的AI 模型,大多來自前端的技術論文,並在原有論文基礎上做了一些結構改進。這些實例具有很高的科學研究價值。讀者可以根據書中提供的論文連結位址,進一步深入學習更多的前端知識,再配合本書的實例進行充分了解,達到融會貫通。本書也可以幫助AI 研究者進行學術研究。   7. 注重方法與經驗的傳授   本書在說明知識時,更注重傳授方法與經驗。全書共有

幾十個「提示」標籤,其中的內容都是功力很高的成功經驗分享與易錯事項歸納,有關於經驗技巧的,也有關於風險避開的,可以幫助讀者在學習的路途上披荊斬棘,快速進步。  

基於深度學習網路之輪廓一致性圖像轉換

為了解決Mac 深度學習的問題,作者孫美雪 這樣論述:

ABSTRACT ..................................................................................................................... ii ACKNOWLEDGEMENTS............................................................................................. iiiCONTENTS ...............................................

..................................................................... ivLIST OF FIGURES ......................................................................................................... viLIST OF TABLES..........................................................................................

................ vii1. Introduction .............................................................................................................. 11.1 Research Background ....................................................................................... 11.2 Research Outline...................

............................................................................ 42. Related Work............................................................................................................ 52.1 Convolutional Neural Network (CNN) ..........................................................

.. 52.2 Generative Adversarial Networks (GAN) ........................................................ 62.3 Image to Image Translation ............................................................................ 102.4 Unpaired Image-to-Image Translation ..............................................

............. 122.5 Cycle Consistency .......................................................................................... 14Methodology........................................................................................................... 163.1 Overview of the Proposed Framework .........

.................................................. 163.2 Generator and Discriminator .......................................................................... 173.3 Contour Consistency Network........................................................................ 183.4 Loss Function ..............

................................................................................... 20Results .................................................................................................................... 224.1 Dataset ...........................................................................

................................. 224.2 System Performance Evaluation..................................................................... 24Conclusions ............................................................................................................ 305.1 Discussion......................

................................................................................. 30REFERENCES ............................................................................................................... 31