ix35汽油的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

國立雲林科技大學 環境與安全衛生工程系 洪肇嘉、謝祝欽所指導 徐筱雯的 VOCs 之受體模式優化-以忠明測站為例 (2021),提出ix35汽油關鍵因素是什麼,來自於來源解析、因子貢獻、正矩陣因子法、多線性引擎。

而第二篇論文國立中央大學 機械工程學系 施聖洋所指導 石泰光的 壓力效應對奈秒重覆脈衝放電引燃機率之影響 (2021),提出因為有 奈秒重覆脈衝放電引燃、引燃機率量測、壓力效應、能量加乘效應、引燃延遲時間、層流火焰速度的重點而找出了 ix35汽油的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了ix35汽油,大家也想知道這些:

VOCs 之受體模式優化-以忠明測站為例

為了解決ix35汽油的問題,作者徐筱雯 這樣論述:

臺中市為人口密集的都會區,污染源較為複雜,因此為能瞭解臺中市揮發性有機化合物 (Volatile Organic Compounds, VOCs) 對其區域之影響,藉由科學工具解析 VOCs 污染來源與貢獻量。本研究針對 2015-2019 年台中忠明光化測站VOCs 逐時數據進行污染來源解析,透過正矩陣因子法 (Positive Matrix Factorization, PMF) 之最小二乘法及 Source Finder (SoFi) 置入 (Multilinear Engine 2, ME-2) 之共軛梯度法,兩者不同的計算方式進行 VOCs 來源及貢獻解析並比較其差異性,最後結合各

年之氣象條件以條件機率函數 (Conditional Probability Function, CPF) 推估 VOCs 污染來源方位並判斷其合理性。研究結果顯示,2015-2019 年台中忠明光化測站 VOCs 平均濃度有逐年略微下降之趨勢,在烷、烯、炔及芳香烴四大類物種,佔比以烷類為主,以芳香烴下降幅度最為明顯。透過 PMF 與 Source Finder (SoFi) 置入 ME-2 皆解析六種主要來源,包括溶劑使用、汽油蒸發、老化氣團、工業源、車輛尾氣及其他,其中溶劑使用為主要貢獻,其次為汽油蒸發及老化氣團。綜合 PMF 與 ME-2 兩種計算方法結果可獲得相似趨勢和貢獻量。五年各因

子來源濃度相關係數由高至低 R2=0.63-0.99,多呈現高度相關,其中溶劑使用五年相關係數皆為 0.99 且來源貢獻範圍以 31-35 (%) 佔最大宗,進一步確定溶劑使用為當地主要污染來源之一。根據 CPF 推估污染來源方位,溶劑使用來自除西南向以外的所有方向,推測與鄰近工業區的金屬製品製造業、化學製品製造業、汽車及其零件製造業、塑膠製品製造及印刷業有關;汽油蒸發來自南方,可能因該測站以南人口密度高於其他方位,汽機車輛較多,因此與加油站分布、公車轉運站及捷運站等多處停車場位置有關;老化氣團主要源於北方至東北方,氣團由后里台地與東勢丘陵構成之缺口進入,受三面環山之影響造成氣團囤積;工業源主

要源於北北東到南方,以潭子加工出口區、太平工業區、大里工業區、及仁化工業區影響較為顯著;車輛排放受鄰近區域道路呈蜘蛛網狀分佈密集且又有南北向主要道路國道 1 號及往彰化的快速道路台 74 縣圍繞之影響。其他因子為混合來源,受各污染源影響並沒有明顯的方向性。

壓力效應對奈秒重覆脈衝放電引燃機率之影響

為了解決ix35汽油的問題,作者石泰光 這樣論述:

本論文探討壓力效應(1 ~ 5 atm)對於奈秒重覆脈衝放電(NRPD)之引燃機率(Pig)的影響。實驗在一個大型雙腔體風扇擾動十字型燃燒爐中進行,其中心處配置了一對固定電極間距(dgap = 0.8 mm)之不鏽鋼尖端探針,搭配NRPD以脈衝重覆頻率(PRF = 1 ~ 80 kHz),引燃預混貧油正丁烷/空氣之混合物( = 0.7,有效Lewis數Le ≈ 2.2 >> 1)。首先,我們使用傳統火花放電引燃(CSSD)系統,透過邏輯回歸方法計算出50%引燃機率時的層流最小引燃能量(MIEL),其中MIEL在1、2、3 atm條件下,分別為23、10、6 mJ,隨壓力增加,MIEL值會下

降。我們以CSSD所得之MIEL值作為NRPD之基準,以累積總能量Etot = 23.7 ± 1 (NP = 11個脈衝波於1 atm)、10.2 ± 0.4 mJ (Np = 5個脈衝波於2 atm)、5.5 ± 0.2 mJ (Np = 3個脈衝波於3 atm)進行NRPD引燃機率量測實驗。經量測後得知,NRPD的第一個脈衝波能量約為0.8 mJ,而從第二個脈衝波開始,能量均約為2.3 mJ。結果顯示:當以Etot ≈ MIEL進行實驗,在PRF = 1 ~ 10 kHz時,Pig = 0,即使是使用NP = 100個脈衝波(Etot ≈ 230 mJ),引燃仍為0。最高的Pig值,發生在

PRF = 40 kHz,其相對應之Pig = 92%/70%/48%,當p = 1/2/3 atm。而當PRF > 40 kHz時,三個壓力的Pig值都會隨著PRF增加而降低,顯示NRPD能量加乘效應僅會發生在特定PRF = 40 kHz,太低或太高PRF均不利於引燃。若以固定Etot ≈ 23 mJ於1、3、5 atm條件下進行NRPD實驗,結果顯示:Pig在給定的PRF條件下,皆會隨著壓力上升而增加,且於高壓條件(p = 3、5 atm),當PRF ≥ 20 kHz時,Pig皆為100%,這是因為MIEL值會隨壓力升高而降低,故同樣Etot在高壓時,較易引燃。此外,CSSD與NRPD兩個

不同引燃系統之引燃延遲時間τRmin皆隨著壓力的升高而減少。其中τRmin定義為在火核發展過程中,從引燃至最小火焰半徑(Rmin)所需的時間。最後,我們測量了層流燃燒速度(SL),其值隨著壓力增加而降低,且SL ~ p-0.35,SL與引燃系統和PRF無關。本研究對未來使用NRPD於高壓環境之引燃,如汽車引擎和燃氣輪機應有所助益。