lg螢幕驅動的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

lg螢幕驅動的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦蘋果、亞馬遜工程師,史丹佛大學電子工程博士等15位矽谷技術咖,顧志強寫的 矽谷工程師不張揚的破壞性創新:黑科技 和田民波的 平面顯示器之技術發展都 可以從中找到所需的評價。

這兩本書分別來自大是文化 和五南所出版 。

國立交通大學 工學院半導體材料與製程設備學程 張翼所指導 薛耀祖的 TFT-LCD 資料線橋接設計以供雷射修補提升產能與良率 (2019),提出lg螢幕驅動關鍵因素是什麼,來自於薄膜電晶體、陣列檢測、雷射修補、缺陷分析、暗點化、臨界電壓。

而第二篇論文東海大學 高階經營管理碩士在職專班 曾雅彩所指導 許詠政的 面板產業新產品發展模式之動態策略規劃 (2017),提出因為有 系統動力學、新產品發展、動態、策略規劃的重點而找出了 lg螢幕驅動的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了lg螢幕驅動,大家也想知道這些:

矽谷工程師不張揚的破壞性創新:黑科技

為了解決lg螢幕驅動的問題,作者蘋果、亞馬遜工程師,史丹佛大學電子工程博士等15位矽谷技術咖,顧志強 這樣論述:

世界會變成什麼樣?這本書不跟你談未來,而是談現狀,這些 改變我們日常的科技「目前的開發進度」。 因此,破天荒!引起中國科技界高度重視:   如果你念理工科、如果你苦尋不著值得投資的標的、不知上哪接觸新科技人、   不知道將來哪個產業鐵定飛躍進步,你必須看這本書!因為:   本書彙集當世最重要新民生科技發展進度,讓你震驚的是:   每一項重大創新,都有中國科學家參與。警醒吧。   ◎豈止懸浮滑板,連住宅都能漂浮地表上,人類再也不受地震和水災威脅。   ◎感測器能小得如沙粒般,地震、搜救(還有健檢)再也不費時費力。   ◎兩個壯漢才搬得動的大螢幕電視,以後一個人便可像捲海報那樣拎回家。  

 ◎萬物互聯,感知彼此,星際大戰單機指揮千軍萬馬的場面,不再是特效。   「黑科技」一詞,起源於日本輕小說《驚爆危機》中登場的術語,   原意指非人類自力研發,淩駕於現有科技之上的知識。   現則多用以形容先進的科技、技術、產品。   本書作者為來自矽谷一線的15位「技術咖」,   他們當中有前谷歌X實驗室成員、蘋果、亞馬遜工程師、   史丹佛大學電子工程博士……展現將改變我們未來生活的「黑科技」。   哪些「黑科技」取代了現有的工作、生活型態,是危機也是商機。   ◎黑科技會這樣改變你的日常:   ‧磁力效應打造反重力系統,人與物可匿蹤:   凌志汽車和矽谷公司皆已做出懸浮滑板的原型

機,   西點軍校生想打造躲避地震和海嘯的漂浮住宅。   磁力甚至能改變物質結構,重現《哈利波特》中的隱身衣。   ‧感測器的極致──智慧型微塵:   未來感測器小如沙粒,散布在空中即時收集環境數據,   天氣預報、地質勘探、地震預報等都將極度準確,   災難搜救工作再也不費時費力。   ‧柔性顯示器,皮膚般服貼、手帕般可折疊:   你能想像螢幕比紙更輕,還可摺疊嗎?日立、三星、LG……   都致力開發柔性顯示器,目前最薄的顯示器只有0.01毫米。   柔性裝置可緊密貼合在皮膚、心臟或大腦上,   24小時追蹤自己的皮膚含水量,或幫癱瘓者讀腦中訊號,控制機械肢體。   ◎當基因編輯技術成

熟:   ‧基因測序──萬一保險公司得知我的基因序列:   想檢測自己的基因序列,只需要花1,000美元!   但預先知道會罹患哪些基因疾病,真的是好事嗎?   保險公司和醫藥公司可能以此索取高額的保費或醫療費用。   ‧雞尾酒配方,培養皿裡、豬身上種出人器官:   科學家在培養皿裡「種出」人工視網膜;   甚至嘗試用豬培育人的胰島、體外培育心臟。   以後自行生產受損器官,不須苦等捐獻者。   ◎畫出大腦神經元圖譜,奈米藥直搗病灶,最後,天網出現:   ‧奈米技術健康監測,還能戒菸治病:   奈米顆粒藥物能協助抗癌藥辨識出癌細胞,同時提高藥效。   谷歌計畫融合奈米顆粒診斷與大數據,

打造健康檢測手錶。   將來奈米技術有望協助戒菸、自動幫糖尿病患者注射胰島素。   ‧天網加地網,和來自太空的基地臺:   臉書、谷歌的無人機滿天飛,建構「天網」平臺,   未來的網路訊號必定先來自於天空、星空。   業者的野心不停留在用手機打衛星電話,   網路的終極邊界是星際互聯網。   還有,雷達測謊儀隔空測心跳,判斷嫌疑犯是否說謊;   感測器感應到腦中思想,在眼前浮現3D虛擬實境介面……   互聯網已成為舊世界,智能科技浪潮即將來臨。 名人推薦   騰訊公司董事會主席兼首席執行官/馬化騰   聯想集團總裁兼首席執行官/楊元慶   創新工場董事長兼CEO/李開復   小米科技董

事長兼CEO/雷軍   樂視控股集團創始人/賈躍亭   著名財經作家、「藍獅子」出版人/吳曉波  

TFT-LCD 資料線橋接設計以供雷射修補提升產能與良率

為了解決lg螢幕驅動的問題,作者薛耀祖 這樣論述:

摘要 ………………………………………………………………iAbstract………………………………………………………………ii誌謝 ………………………………………………………………iii目錄 ………………………………………………………………iv表目錄 ………………………………………………………………vi圖目錄 ………………………………………………………………vii第一章 緒論…………………………………………………………………………11.1 研究動機………………………………………………………………11.2 研究目的………………………

…………………………………………2第二章 文獻探討…………………………………………………………………32.1 TFT LCD 製程簡介……………………………………………32.2 TFT LCD 驅動原理……………………………………………42.2.1 LCD 主動式矩陣與被動式矩陣………………………42.2.2 TFT LCD 畫素工作原理………………………………………72.3 TFT 製程與設備簡介…………………………………………112.4 TFT 設計與功用……………………………………………………14第三章 TFT 缺陷檢測與雷射修補……………

……………………173.1 TFT LCD 常見缺陷…………………………………………………173.2 TFT 製程異常與缺陷分析……………………………………193.2.1 TFT 製程常見缺陷型態………………………………………193.3 TFT 缺陷攔檢與檢測設計……………………………………233.3.1 自動光學檢測設備與原理………………………………243.3.2 陣列電性檢測設備與原理………………………………253.4 TFT 雷射修補方法與修補設計……………………283.4.1 雷射原理與產生……………………………………………………283

.4.2 雷射修補手法………………………………………………………293.4.2.1 雷射修補點缺陷方法…………………………………………303.4.2.2 雷射暗點化手法……………………………………………… 303.4.2.3 雷射暗點化規格……………………………………………… 313.4.3 雷射修補線缺陷方法…………………………………………323.4.3.1 雷射救援線設計……………………………………………… 323.4.3.2 雷射救援線修補手法…………………………………………323.4.4 雷射化學氣相沉積設備與修補………

………………333.5 雷射修補設計考量…………………………………………… 35第四章 改善設計與實驗結果…………………………………………364.1 實驗目的…………………………………………………………………364.1.1 資料線橋接設計……………………………………………………364.1.2 資料線橋接設計修補手法…………………………………384.2 實驗方法…………………………………………………………………394.2.1 TEG 電性量測………………………………………………………394.2.2 測試鍵……………………………………………

…………………………404.2.3 汲極加電壓應力測試…………………………………………414.2.4 實驗條件……………………………………………………… 424.3 實驗結果……………………………………………………… 434.3.1 實驗對照與人工缺陷…………………………………………444.3.2 Stress 可靠度實驗……………………………………………49第五章 結論與建議……………………………………………………………545.1 結論……………………………………………………………………………545.2 未來展望………………………

…………………………………………54參考文獻……………………………………………………………………………………55

平面顯示器之技術發展

為了解決lg螢幕驅動的問題,作者田民波 這樣論述:

  二十一世紀,TFT LCD液晶顯示器在平板顯示器中脫穎而出,從小尺寸的手機、攝影機、數位相機,中尺寸的筆記型電腦、桌上型電腦,大尺寸的家用電視到大型投影設備,應用TFT LCD的產品在顯示器市場上獨佔鰲頭。目前以TFT LCD為代表的平板顯示產業發展迅速,預估今後幾年內其全球總產值將超過積體電路產業,面對機遇和挑戰,發展TFT LCD產業更是刻不容緩。   TFT LCD是多元知識和技能的總匯,涉及包括液晶物理和化學、光學、材料科學、彩色化技術、驅動電路、製程技術等多學科的原理和技術。本系列共分十二章,第1章介紹液晶顯示的歷史和現狀,第2章作為液晶材料和液晶顯示入門,以漫畫的形式直觀地說明

;第3、4、5、6章為TFT LCD液晶顯示器的基礎,分別是液晶化學與物理簡論、液晶顯示器及顯示特性、無源驅動及有源驅動、TFT LCD的工作模式及顯示螢幕構成;第7、8、9章分別討論TFT LCD製作技術、液晶顯示器的主要元件及材料、TFT LCD的改進及性能提高;第10章討論液晶顯示器的產業化。由於TFT LCD對於其他類形平板顯示器可謂異曲同工,熟悉了前者可以觸類旁通;因此第11章介紹各類平板顯示器的最新進展;第12章討論平板顯示器產業現狀及發展預測。   本書除了兼顧原理、技術、理論,產業化、發展前景,更以深入淺出的文字及圖解加深讀者的理解。對於新入門者易於著手,專家學者更顯新意。本書

適合作為大學或研究所各相關專業的教科書,適合產業界專業人士及有興趣自修的社會大眾讀者閱讀。 作者簡介 田民波 現職:清華大學材料科學與工程系教授學歷:清華大學工程物理系研究所經歷:清華大學核能及新能源技術研究院助教   清華大學工程物理系講師   清華大學材料科學與工程系副教授   日本京都大學國家公派訪問學者   日本Kyoto Elex株式會社特邀研究員   清華大學材料科學與工程系教授代表著作:《材料科學基礎》     《電子顯示》     《磁性材料》     《高密度封裝基板》     《材料科學基礎學習輔導》 校訂者簡介 林怡欣 現任:國立交通大學光電工程學系助理教授學歷:美國Un

iversity of Central Florida光學博士   國立交通大學光電所碩士   國立清華大學物理系學士 第十章 液晶顯示器的產業化  10.1 液晶顯示器產業的發展趨勢─從小型化到大型化再到多樣化    10.1.1 母板玻璃大型化的背景    10.1.2 多樣化的畫面尺寸將擴展液晶產業的領域    10.1.3 擴大尺寸的過度競爭將引發結構性不景氣    10.1.4 功能饑渴狀態下,不斷增加的顯示資訊量    10.1.5 共同營造繼續發展的空間  10.2 步入成熟期的液晶產業    10.2.1 液晶和半導體各自符合不同的比例定律    10.2.2 液晶螢幕擴大的

比例定律─北原定律和西村定律    10.2.3 大型液晶螢幕的熟悉曲線─小田原定律    10.2.4 液晶三定律描述了20世紀90年代的發展軌跡    10.2.5 三個定律的反面─落入負螺旋的危險性    10.2.6 脫離傳統定律發展的可能性  10.3 支撐液晶產業成長的製造裝置    10.3.1 支撐TFT液晶世代交替的周邊產業    10.3.2 表演「面取數魔術」的製造裝置    10.3.3 高額的廠房建設費用會超過製造裝置費用嗎?    10.3.4 迅速擴大的液晶市場和逐漸縮小的裝置市場    10.3.5 人們能不能獲得製造裝置的技術秘密?     10.3.6 「面

取數魔術」還能再表演下去嗎?  10.4 TFT液晶的世代及內涵    10.4.1 TFT液晶世代的內涵    10.4.2 按基板尺寸稱呼TFT液晶的世代    10.4.3 更快世代交替的推動力    10.4.4 「面取數魔術」的幕後秘密    10.4.5 寬畫面增加面取操作難度    10.4.6 裝置革新促進生產性的提高    10.4.7 技術工程師的重要作用    10.4.8 TFT液晶世代的終點站    10.4.9 TFT液晶的世代劃分會不會變化?  10.5 玻璃基板尺寸大型化的背景及其限制    10.5.1 畫面尺寸與臨場感─大型顯示器應具備的特性    10.5

.2 有效利用寬畫面的方法    10.5.3 基板尺寸與TFT液晶世代,按單純的基板尺寸擴大定律看    10.5.4 基板尺寸大型化的課題    10.5.5 基板尺寸的多樣化及液晶生產線的發展方向  10.6 關於玻璃基板(母板)尺寸的標準化    10.6.1 標準化的理想和限制    10.6.2 裝置廠商默認非標準化的現實    10.6.3 已實現標準化的顯示規格也在不斷進展中    10.6.4 顯示螢幕畫面尺寸能否實現標準化? 第十一章 各類平面顯示器的最新進展  11.1 電漿平面顯示器─PDP    11.1.1 電漿電視的發展概況    11.1.2 PDP的基本結構和

工作原理    11.1.3 電漿電視的顯示螢幕構造及驅動電路    11.1.4 PDP的製作技術及關鍵材料    11.1.5 PDP的產業化動向及發展前景    11.1.6 不斷進展中的各大公司的PDP技術    11.1.7 PDP TV在full HD產品開發中的競爭激烈  11.2 有機EL顯示器─OLED和PLED    11.2.1 有機EL顯示器的發展概況    11.2.2 有機EL元件的基本構造    11.2.3 發光機制初探    11.2.4 有機EL的關鍵材料    11.2.5 有機EL的彩色化    11.2.6 有機EL顯示器的驅動技術    11.2.7

 OLED的製作技術    11.2.8 PLED的製作技術    11.2.9 有機EL與LCD的對比    11.2.10 需要開發的課題和正在採用的新技術    11.2.11 有機EL顯示器的產業化  1.3 無機EL顯示器的最新技術動向    11.3.1 開發背景    11.3.2 無機EL的構成和關鍵技術    11.3.3 無EL的開發動向    11.3.4 顯示器的特性    11.3.5 發展方向  11.4 場發射顯示器—FED    11.4.1 FED的基本原理及製作技術    11.4.2 FED的主要類型    11.4.3 Spindt法FED的研究開發動向

    11.4.4 碳奈米管(CNT)FED    11.4.5 彈道電子表面發射型顯示器(BSD)  11.5 LED顯示器的技術進展    11.5.1 LED的工作原理    11.5.2 LED顯示器的關聯材料    11.5.3 LED的製作方法及發光效率的定義    11.5.4 提高LED效率的關鍵技術    11.5.5 白色的實現及在顯示器中的應用    11.5.6 今後LED顯示器的開發  11.6 VFD—真空螢光管顯示器    11.6.1 真空螢光管顯示器概述    11.6.2 VFD的結構及工作原理    11.6.3 VFD的應用    11.6.4 今後的

發展預測  11.7 電子紙    11.7.1 何謂電子紙    11.7.2 電子紙的結構與分類    11.7.3 液晶型電子紙    11.7.4 有機EL型電子紙    11.7.5 類紙型電子紙    11.7.6 撓性電子紙中必不可缺的有機薄膜電晶體    11.7.7 電子紙的產業化現狀  11.8 DMD和DLP    11.8.1 DMD的發明和發展概況    11.8.2 DMD的結構和工作原理    11.8.3 DLP的性能及特點  11.9 背投電視    11.9.1 背投電視概述    11.9.2 背投電視的三種主要方式    11.9.3 LCD方式(穿透型

液晶方式)    11.9.4 DMD方式(DLP方式)    11.9.5 LCOS方式(反射型液晶方式)    11.9.6 背投顯示器的技術進展    11.9.7 LED光源、雷射光源在背投電視的應用 第十二章 FPD產業現狀及發展預測  12.1 電子顯示器產業的市場動向    12.1.1 資訊系統的發展和電子顯示器    12.1.2 相互競爭的電子顯示器    12.1.3 電子顯示器市場    12.1.4 激烈競爭中的電子顯示器產業  12.2 FPD的產業地圖    12.2.1 FPD的用途和市場動向    12.2.2 FPD按不同技術的業界動向    12.2.3 

顯示器產業的結構    12.2.4 FPD製造裝置的市場動向    12.2.5 FPD今後市場擴大面臨的課題    12.2.6 FPD產業的SWOT分析  12.3 日本的FPD產業    12.3.1 日本國內的顯示器市場    12.3.2 日本的FPD產能    12.3.3 日本的FPD發展戰略    12.3.4 日本的產官學協調與PDP開發戰略    12.3.5 各地區紛紛建立與FPD相關聯的產業據點  12.4 韓國的FPD產業    12.4.1 製定中長期發展藍圖—創立韓國顯示器       產業協會;提高設備、材料的國產化比例    12.4.2 三星電子    1

2.4.3 LG Philips LCD    12.4.4 三星SDI    12.4.5 LG電子  12.5 台灣的FPD產業    12.5.1 台灣的FPD產業規模目前增大至4.5萬億日圓,2007年增加14%    12.5.2 AUO(友達光電)    12.5.3 CMO(奇美電子)    12.5.4 CPT(中華映管)    12.5.5 Hannstar(瀚宇彩晶)    12.5.6 Innolux(群創光電)    12.5.7 Wintek(勝華科技)    12.5.8 Toppoly(統寶光電)    12.5.9 RiTdisplay(錸寶科技)    12.

5.10 Univision(悠景科技)    12.5.11 Prime View(元太科技)  12.6 中國大陸的FPD產業    12.6.1 中國大陸搭載有LCD應用產品的產量持續增加    12.6.2 挑戰目標是TV面板製造的中國大陸FPD產業    12.6.3 SVA-NEC(上海廣電NEC液晶顯示器有限公司)    12.6.4 BOE-OT(北京京東方光電科技有限公司)    12.6.5 IVO(昆山龍騰光電有限公司)    12.6.6 深圳天馬微電子    12.6.7 Truly Semiconductor(信利半導體有限公司)    12.6.8 吉林北方彩晶數

位電子有限公司    12.6.9 南京新華日液晶顯示技術有限公司    12.6.10 上海松下電漿(上海松下電漿顯示器有限公司)    12.6.11 四川世紀雙虹顯示元件有限公司    12.6.12 維信諾(Visionox,北京維信諾科技有限公司) 附錄 液晶顯示器常用縮略語

面板產業新產品發展模式之動態策略規劃

為了解決lg螢幕驅動的問題,作者許詠政 這樣論述:

中、韓、日、美各國持續地投入LCD (Liquid Crystal Display)或OLED(Organic Light-Emitting Diode)面板擴廠的趨勢來看,面板仍是3C(資訊Computer、通訊Communication、消費性電子Consumer Electronics)產業的關鍵零組件。高單價及高利潤的電視面板是面板大廠最主要的營收及獲利來源。2018年起中國4個G10.5 LCD面板廠陸續開始量產,若電視銷售未能同步成長時,面板產業將面臨長期的供過於求。因此各面板廠除了持續地擴充LCD功能來提升價值外,更是投入研發OLED及Micro LED(Micro Light

-emitting diode)顯示器等新式顯示器。本研究以系統動力學來分析並建構面板產業發展之動態,進而探討同步與序列兩種研發模式應用於面板產業之現象,藉以提出面板產業發展策略之建議。研究結論為在面板產業的因果回饋環路中探討出量產正環是極為重要的,該正環的加乘促成新舊顯示技術的世代交替。新技術的研發若採積極的同步模式可同時驅動多項研發正環,進而縮短研發製程;若採保守的序列模式時,則依序個別推動研發正環,容易受時間遞延影響而讓研發日程變長。對競爭激烈的面板產業而言,研發速度決定出企業為先進者或跟隨者的角色。建議面板廠研發新技術時,將同步的研發模式納入優先評估。