sup板推薦的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

sup板推薦的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦可大王寫的 大台北親子遊:從市中心一路玩到大自然!160+人氣景點大滿足提案,完美行程X主題探索X趣味體驗,超多規劃原來還可以這樣玩 和西村仁的 圖解加工材料:兼顧品質╳成本╳交期之外觀與實用性都 可以從中找到所需的評價。

另外網站【2022宜蘭SUP】Top3 SUP立槳活動,季節地點費用攻略也說明:(圖: 宜蘭SUP-賊仔澳秘境;KKday授權). SUP的全名為立式划槳(Stand Up Paddle),顧名思義就是站著划槳!是一種結合衝浪與划船的板類運動,不像衝浪 ...

這兩本書分別來自PCuSER電腦人文化 和易博士出版社所出版 。

明志科技大學 材料工程系碩士班 李志偉、張麗君所指導 陳聖諺的 TiZrSiCN薄膜的微結構和機械性質研究 -矽與碳含量的影響 (2021),提出sup板推薦關鍵因素是什麼,來自於高功率脈衝磁控濺鍍、裝飾性鍍膜、TiZrSiCxNy薄膜、耐磨性、動電位極化試驗。

而第二篇論文長庚大學 電子工程學系 高泉豪所指導 魏敏哲的 使用溶膠凝膠法製作氧化鉍薄膜結合電漿處理在生醫感測上之應用 (2020),提出因為有 三氧化二鉍、等離子處理、熱退火、離子感測、ITO基板的重點而找出了 sup板推薦的解答。

最後網站鬼月快過!超夯SUP、風浪板玩起來新北4種海上體驗一次看則補充:台北高溫飆到37度,此時不玩水太可惜,四面環海的臺灣,各類型水上活動發展日益蓬勃,不管是近年超夯的SUP立式划槳、獨木舟、風浪板或衝浪,在新北市的「 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了sup板推薦,大家也想知道這些:

大台北親子遊:從市中心一路玩到大自然!160+人氣景點大滿足提案,完美行程X主題探索X趣味體驗,超多規劃原來還可以這樣玩

為了解決sup板推薦的問題,作者可大王 這樣論述:

玩的和別人不一樣!大人小孩都說讚的50條遊樂路線馬上出發! ●從台北開始,一路向外拓展,東北角、北海岸、淡水、八里、三峽、新店、烏來、金山、萬里…一定要帶小孩去玩的高CP值景點完整收錄! ●藝術森林、文創園區、科學世界、親子公園、共融遊戲場、探索樂園、自然步道、玩水秘境、角色扮演、DIY體驗…保證玩瘋超豐富主題應有盡有! ●旅遊資訊、最佳路線、交通指南,QRCODE、google map全掌握,貼心爸媽出遊更輕鬆! 大台北親子玩樂地圖攻略,美好休日跟著玩就對了! ●意想不到的好玩! 圓山綠洲森林、萬華共融遊戲場、天母棒球樂園、中和超長滾輪滑梯、大台北最強親子公園、汐止玩水祕境、新店仙氣美景

、烏來絕美瀑布步道、北海岸最美亮點…必玩好點全蒐羅! ●完美行程這樣排! 看恐龍逛金庫,浮誇博物館大集合;森林、親水、濕地各系親子公園玩整天;櫻花林、末日祕境、探訪動物冒險去;親子探索館、海景步道,極北玩水趣;火龍岩、魔鬼洗衣板,發掘豐富的海洋生態…大手牽小手一日、半日遊! ●趣味體驗大發現! 最夯的小孩角色扮演、DIY手作,化身迷你版列車長、小小郵差送信去、來場戲偶掌中戲、虛擬銀行學理財、天文館宇宙探險;製作龍捲風、發射寶特瓶火箭,超寓教於樂! 番外篇:基隆、宜蘭大自然景點超推薦! 海科館、忘憂谷、海豹岩、忍者村、可愛農場、螃蟹冒泡、黃金河道、動物牧場…轉換場景放電去。  

sup板推薦進入發燒排行的影片

各位❤️久等了 我們的SUP影片出爐!
這次很開心跟蔡哥林萱一起去體驗,讓我發現自己真的是海龍王女兒,居然可以在浮板上不墜落😆
雖然最後挑戰失敗,但幸好有蘇菲導管式棉條,無感*好舒適,讓我在玩水過程中一點異物感*都沒有❤️
最長可達八小時吸收力🥰🥰推薦給大家!
蘇菲導管設計對新手很友善‼️大家可以去通路買來體驗、試試看喔!

【#免費索取兌換券】https://lihi1.com/laBWo/yt
加入蘇菲LINE好友就可免費索取19元兌換券,獲得5入體驗組唷!
-
#蘇菲棉條 #無感舒適回不去 #無感很可以沒什麼不可以 #立即索取兌換券
*使用感因人而異

TiZrSiCN薄膜的微結構和機械性質研究 -矽與碳含量的影響

為了解決sup板推薦的問題,作者陳聖諺 這樣論述:

近年來過渡金屬氮化物薄膜和過渡金屬碳氮化物薄膜由於其硬度、熱穩定性、耐磨性和抗腐蝕性而在許多領域中被廣泛應用,可作為切削加工、汽車工業和3C產品中的裝飾鍍膜。過渡金屬碳氮化物(TMCxNy)兼備了TiN和TiC的優點,已成為一類新的功能性鍍膜和裝飾性鍍膜材料,主要歸功於它們優異的機械性能以及耐磨性、耐腐蝕性和可調節的色彩。本研究利用高功率脈衝磁控濺射(High Power Impulse Magnetron Sputtering, HiPIMS)系統和射頻電源(Radio Frequency, RF)搭配Ti靶與Zr50Ti15Si35靶,於矽晶片(100)、304不銹鋼及420不銹鋼沉積碳

氮化鈦鋯矽(TiZrSiCxNy)薄膜。並探討TiZrSiNy薄膜在不同矽和碳含量對薄膜微結構與機械性質的影響。第一階段改變氬、氮氣及改變Zr50Ti15Si35靶功率,分別鍍製不同矽和氮含量的TiZrSiNy薄膜。第二階段實驗為固定氣體總流量約30 sccm,改變氬、氮氣、乙炔流量鍍製TiZrSiCxNy薄膜,第三階段實驗為固定氣體總流量約30 sccm,改變乙炔流量鍍製TiZrSiCxNy薄膜。透過電子微探儀進行成分定量分析,低掠角X光繞射儀進行薄膜晶相分析;使用掃描式電子顯微鏡與穿透式電子顯微鏡觀察薄膜之截面微結構;利用奈米壓痕儀、刮痕試驗、磨耗試驗評估薄膜的硬度、附著性和耐磨性質;以動

電位極化試驗測試薄膜的抗腐蝕特性;再以紫外光-可見光分光光譜儀以CIE L*a*b*色彩空間測量TiZrSiCxNy薄膜的顏色。研究發現,碳含量為11.9 at.% 的TiZrSiCxNy薄膜具有最高的硬度34.4 GPa,較佳的彈性係數294 GPa。而碳含量為9.9 at.% 的TiZrSiCxNy薄膜具有較佳的臨界荷重43.1N,摩擦係數0.23,最低的磨耗率1.96×10-6 mm3/N·m,以及極佳的腐蝕阻抗,並擁有玫瑰金色調的外觀。本研究已成功使用HiPIMS技術製備出具有高硬度、附著性佳等機械性質以及良好的抗腐蝕性的TiZrSiCxNy薄膜,可作為裝飾性鍍膜之用。

圖解加工材料:兼顧品質╳成本╳交期之外觀與實用性

為了解決sup板推薦的問題,作者西村仁 這樣論述:

從「想這樣設計就用這種材料」的視點出發, 不談理論和艱澀知識,文科生也能輕易了解用在實務工作上! 「該選什麼材質?為什麼做出來的東西不堪使用?」 「同樣的效果,該選擇便宜材料另做加工?還是選用較貴材料減少加工?」 每一個產品創意都需要仰賴材料和製造技術才能實現。材料的選擇決定著最終產品外觀的吸睛程度、以及切合功能性與否;更與後續的加工方式息息相關。  要成為產品製造的「材料達人」,並非要懂得材料成分、或結晶結構如何隨溫度改變之類的艱深知識,更重要的是懂得實務上材料的加工特性和應用缺陷,如延展性、導熱速度、生鏽與否等,便能依據設計的功能性和美學需求,參酌加工方式、成本、

交期,進而篩選擇定材料。 本書從材料應用著手,綜合評估品質、成本、交期三面向的材料特性;在兼顧外觀、實用性的同時,納入營業觀點,將資源做最大整合與最有效的利用。 打開本書你將學會: ‧機械性質、物理性質、化學性質三大材料特性一手掌握 ‧涵蓋 鋼鐵/鋁/銅/塑膠/陶瓷等金屬非金屬常用材料,參考最實用 ‧統整熱處理加工如何改變材料特性:淬火、回火、高週波淬火、滲碳... ‧從材料用途反推,建立選材的標準化程序;節省時間、金錢成本最具效率 §設計人專業推薦§ 王千睿 (國立臺灣師範大學設計學系教授) 陳德勝 (Xcellent卓嶽設計創意總監)  潘炯丞 (BenQ數位家居產品事業部處長)

§日本讀者實證推薦§ 「文科出身的製造業相關從業人員必讀!將艱深的材料知識以相當淺顯易懂的方式解說;恐怕沒有其他書比這本更讓人容易理解了。」 「以金屬材料為中心一直到非金屬材料都有廣泛的介紹,深入淺出的說明足見作者在實務經驗、學識、論述能力上都有過人的表現。」 「本書介紹業界常用金屬材料的主要特徵,易讀易懂;推薦用來擴大自己的視野跟知識範疇。」

使用溶膠凝膠法製作氧化鉍薄膜結合電漿處理在生醫感測上之應用

為了解決sup板推薦的問題,作者魏敏哲 這樣論述:

Table of Contents指導教授推薦書............................................口試委員審定書............................................致謝 iii摘 要 ivAbstract vTable of Contents viList of Figures xiList of Tables xviChapter 1 - 1 -Introduction - 1 -1.1 Background - 1 -1.1.1 The background

and history of ISFET - 1 -1.1.2 EIS structure and transport mechanism - 2 -1.1.3 The characteristic of bismuth oxide - 3 -1.1.4 The NH3 and N2O plasma effect - 5 -1.1.5 The characteristics of ITO glass substrate - 5 -1.1.6 Sol-gel process technology - 6 -1.2 The motivation - 6

-1.2.1 The Bi2O3 sensing film deposited on sapphire substrate with RTA in O2 ambient - 7 -1.2.2 The motivation of NH3 & N2O plasma treatment on Bi2O3 sensing membrane in EIS - 8 -1.2.3 The motivation of Bi2O3 deposited on ITO glass substrate - 8 -1.3 Thesis Organization - 9 -Chapter 2

- 13 -The characteristics of Bi2O3 sensing membrane applied in electrolyte-insulator-semiconductor structure after rapid thermal annealing in different temperature - 13 -2.1 Introduction - 13 -2.2 Experiment - 14 -2.3 Analysis of Physical Characteristics - 14 -2.3.1 XRD analysis for Bi2

O3 sensing membrane in different RTA temperature - 14 -2.3.2 XPS analysis for Bi2O3 sensing membrane in different RTA temperature - 15 -2.3.3 AFM of analysis for Bi2O3 sensing membrane in different RTA temperature - 17 -2.3.4 FESEM analysis for Bi2O3 sensing membrane in different RTA temper

ature - 17 -2.3.5 Transmission electron microscope(TEM) analysis for Bi2O3 sensing membrane in different RTA temperature - 18 -2.4 Analysis of Electrical Characteristic - 19 -2.4.1 Sensitivity and Linearity of Bi2O3 sensing membrane in different RTA temperature - 19 -2.4.2 Hysteresis vol

tage of Bi2O3 sensing membrane in different RTA temperature - 19 -2.4.3 Drift rate of Bi2O3 sensing membrane deposited in different RTA temperature - 20 -2.5 The effect of Bi2O3 sensing film with different RTA temperature in different ionic solutions - 20 -2.5.1 Test solutions preparation

- 21 -2.5.2 Measurement of Bi2O3 sensing membranes with different annealing temperatures in different ionic solutions - 21 -2.6 Enzyme-immobilized membrane based on Bi2O3 sensing membranes for urea detection - 22 -2.6.1 Chemicals - 23 -2.6.2 Enzyme immobilization with covalent bonding

- 23 -2.6.3 The urea detection of enzyme- Bi2O3 EIS structure - 24 -2.7 Enzyme-immobilized membrane based on Bi2O3 sensing membranes for glucose detection - 24 -2.7.1 Chemicals - 25 -2.7.2 Enzyme immobilization with covalent bonding - 25 -2.7.3 The glucose detection of enzyme-Bi2O3 EIS

structure - 25 -2.8 Enzyme-immobilized membrane based on Bi2O3 sensing membranes for Creatinine detection - 26 -2.8.1 Enzyme immobilization with covalent bonding - 27 -2.8.2 The creatinine detection of enzyme -Bi2O3 EIS structure - 27 -2.9 Summary - 27 -Chapter 3 - 48 -The Comparis

on of NH3 and N2O Plasma Treatment on Bi2O3 Sensing Membrane Applied in Electrolyte-Insulator-Semiconductor Structure. - 48 -3.1 Introduction - 48 -3.2 Experiment - 50 -3.3 Analysis of Physical Characteristics - 50 -3.3.1 XRD of Bi2O3 sensing membrane in different NH3 and N2O plasma time

process - 50 -3.3.2 XPS of Bi2O3 sensing membrane in different NH3 and N2O plasma time process - 51 -3.3.3 Atomic force microscope (AFM) of analysis for Bi2O3 sensing membrane in different NH3 and N2O plasma time process - 53 -3.3.4 FESEM analysis for Bi2O3 sensing membrane in different NH

3 and N2O plasma time process - 54 -3.3.5 Transmission electron microscope(TEM) analysis for Bi2O3 sensing membrane in NH3 plasma time - 55 -3.3.6 Secondary-ion mass spectrometry (SIMS) analysis for Bi2O3 sensing membrane in different NH3 and N2O plasma time process - 56 -3.4Analysis of Ele

ctrical Characteristics - 56 -3.4.1 Sensitivity of Bi2O3 sensing membrane in different NH3 and N2O plasma time process - 56 -3.4.2 Hysteresis voltage of Bi2O3 sensing membrane in different NH3 and N2O plasma time process - 57 -3.4.3 Drift rate of Bi2O3 sensing membrane in different NH3 and

N2O plasma time process - 59 -3.5 Measurement of Bi2O3 sensing film with different plasma treatment time in different ionic solutions - 60 -3.6 Enzyme-immobilized membrane based on Bi2O3 sensing membrane in different NH3 and N2O plasma time process for different ions solution measurement (Urea

, Glucose, Creatinine) - 61 -3.6.1 Enzyme immobilization with covalent bonding - 61 -3.6.2 Urea detection of Enzyme-Bi2O3 sensing membrane in plasma time process - 61 -3.6.3 Glucose detection of Enzyme- Bi2O3 sensing membrane in plasma time process - 62 -3.6.4 Creatinine detection of Enz

yme- Bi2O3 sensing membrane in plasma time process - 63 -3.7 Summary - 63 -Chapter 4 - 93 -The Bi2O3 sensing membrane deposited on ITO glass substrate applied in EGFET structure - 93 -4.1 Introduction - 93 -4.2 Experiment - 94 -4.3 Analysis of Physical Characteristics - 94 -4.3.

1 XRD of Bi2O3 film deposited on silicon substrate and ITO glass substrate - 94 -4.3.2 XPS of Bi2O3 film deposited on silicon substrate and ITO glass substrate - 95 -4.3.3 Atomic force microscope (AFM) of Bi2O3 film deposited on silicon substrate and ITO glass substrate - 96 -4.3.4 Field Em

ission Scanning Electron Microscope (FESEM) of Bi2O3 film deposited on silicon substrate and ITO glass substrate - 97 -4.4 Analysis of Electrical Characteristics - 97 -4.4.1 Sensitivity of Bi2O3 film deposited on silicon substrate and ITO glass substrate - 98 -4.4.2 Hysteresis Effect of Bi2

O3 film deposited on silicon substrate and ITO glass substrate - 98 -4.4.3 Drift Effect of Bi2O3 film deposited on silicon substrate and ITO glass substrate - 99 -4.5 Measurement of Bi2O3 sensing films made on different substrates are used in EGFET components in different ionic solutions -

100 -4.6 Enzyme-immobilized membrane based on Bi2O3 sensing membrane deposited on different substrates for different ions solution measurement (Urea, Glucose, Creatinine) - 101 -4.6.1 Enzyme immobilization with covalent bonding - 101 -4.6.2 Urea detection of Enzyme- Bi2O3 sensing membrane depo

sited on Si substrate and ITO glass substrate - 102 -4.6.3 Glucose detection of Enzyme- Bi2O3 sensing membrane deposited on Si substrate and ITO glass substrate - 102 -4.6.4 Creatinine detection of Enzyme- Bi2O3 sensing membrane deposited on Si substrate and ITO glass substrate - 103 -4.7 E

lectrochemical impedance spectroscopy measurement of Bi2O3 sensing membrane deposited on the ITO glass substrate for different ionic solution detection (Urea, Glucose, Creatinine) - 104 -4.7.1 Theory of Electrochemical impedance spectroscopy [56-58] - 105 -4.7.2 Phenotype of Bi2O3 sensor membr

ane modified by enzyme in urea solution - 106 -4.7.3 Phenotype of Bi2O3 sensor membrane modified by enzyme in glucose solution - 107 -4.7.3 Phenotype of Bi2O3 sensor membrane modified by enzyme in creatinine solution - 108 -4.8 Summary - 108 -Chapter 5 - 130 -Conclusion and Future Wor

k - 130 -5.1 Conclusion - 130 -5.2 Future Work - 131 -Reference - 132 -List of FiguresFig. 1-1 The ISFET structure - 11 -Fig. 1-2 The EIS structure - 12 -Fig. 2-1 Experimental process of Bi2O3 sensing element - 29 -Fig. 2-2 XRD of Bi2O3 film after annealing at various temperatur

es in O2 ambient for 30 sec - 30 -Fig. 2-3 XPS results of Bi2O3 film (a)Bi4f, (b) O 1s after annealing at various temperatures in O2 ambient for 30 sec - 31 -Fig. 2-4 AFM of Bi2O3 film after annealing at various temperatures in O2 ambient for 30 sec - 34 -Fig. 2-5 FESEM of Bi2O3 film after

annealing at various temperatures in O2 ambient for 30 sec - 36 -Fig. 2-6 TEM of as-deposited Bi2O3 film (a)As-dep 100k, (b)As-dep 1M - 37 -Fig. 2-7 TEM of Bi2O3 film after annealing at 600oC in O2 ambient for 30 sec (a) RTA 600oC 100k, (b) RTA 600oC 1M, - 38 -Fig.2-8 Sensitivity and linear

ity of Bi2O3 film after annealing at various temperatures in O2 ambient for 30 sec - 41 -Fig. 2-9 Hysteresis voltage of Bi2O3 film after annealing at various temperatures in O2 ambient for 30 sec during the pH loop of 7→4→7→10→7 - 41 -Fig. 2-10 Drift voltage of Bi2O3 film after annealing at va

rious temperatures in O2 ambient for 30 sec, then dipped in pH 7 buffer solution - 42 -for 12 hours - 42 -Fig. 2-11 The sensitivity and linearity of sodium (a) As-dep (b) RTA 600oC O2 - 43 -Fig. 2-12 The sensitivity and linearity of potassium (a) As-dep (b) RTA 600oC O2 - 44 -Fig. 2-13 E

nzyme immobilization steps - 44 -Fig. 2-14 Urea-responses of enzyme- immobilized Bi2O3(a) As-dep, (b) Annealing at 600oC in O2 ambient - 45 -Fig. 2-15 Glucose-responses of enzyme- immobilized Bi2O3(a) As-dep, (b) Annealing at 600oC in O2 ambient - 46 -Fig. 2-16 Creatinine- responses

of enzyme- immobilized Bi2O3(a) As-dep, (b) Annealing at 600oC in O2 ambient - 47 -Fig. 3-1 The plasma Bi2O3 film structure - 65 -Fig. 3-2 XRD of the Bi2O3 film after different NH3 plasma treatment time - 65 -Fig. 3-3 XRD of the the Bi2O3 film after different N2O plasma treatment time

- 66 -Fig. 3-4 XPS of Bi2O3 film (a)Bi4f, (b)O1s after different NH3 plasma treatment time - 67 -Fig. 3-5 XPS of Bi2O3 film (a)Bi4f, (b)O1s after different N2O plasma treatment time - 68 -Fig. 3-6 2D-AFM of Bi2O3 film after different NH3 plasma treatment time (a) As-dep RMS:1.31nm, (b)

1 min NH3 plasma RMS: 5.32nm, (c) 3 min NH3 plasma RMS: 15.56nm , (d) 6 min NH3 plasma RMS: 11.33nm - 70 -Fig. 3-7 3D-AFM of Bi2O3 film after different NH3 plasma treatment time (a) As-dep RMS:1.31nm, (b) 1 min NH3 plasma RMS: 5.32nm, (c) 3 min NH3 plasma RMS: 15.56nm , (d) 6 min NH3 plasma R

MS: 11.33nm - 71 -Fig. 3-9 3D-AFM of Bi2O3 film after different N2O plasma treatment time (a) As-dep RMS:1.31nm, (b) 1 min N2O plasma RMS:3.9nm, (c) 3 min N2O plasma RMS:3.83nm , (d) 6 min N2O plasma RMS:3.21nm - 72 -Fig. 3-10 FESEM of Bi2O3 film after different NH3 plasma treatment time

(a) As-dep, (b) 1 min NH3 plasma, (c) 3 min NH3 plasma, (d) 6 min NH3 plasma - 73 -Fig. 3-11 FESEM of Bi2O3 film after different N2O plasma treatment time (a) As-dep, (b) 1 min N2O plasma, (c) 3 min N2O plasma, (d) 6 min N2O plasma - 74 -Fig. 3-12 TEM of Bi2O3 film after 3min NH3 plasma

treatment (a)100k, (b)1M - 75 -Fig. 3-13 EDX of Bi2O3 film after 3min NH3 plasma treatment - 76 -Fig. 3-14 SIMS analysis for Bi2O3 film after different plasma treatment (a) NH3 plasma treatment, (b)N2O plasma treatment - 77 -Fig 3-15 Sensitivity and linearity of the Bi2O3 sensing mem

brane after (a) as-dep, (b) 1 min, (c) 3 min, (d) 6 min NH3 plasma treatment - 79 -Fig 3-16 Sensitivity and linearity of the Bi2O3 sensing membrane after (a) as-dep, (b) 1 min, (c) 3 min, (d) 6 min N2O plasma treatment - 81 -Fig. 3-17 Hysteresis voltage of the Bi2O3 sensing membrane after NH3

plasma treatment during the pH loop of 7→4→7→10→7 - 82 -Fig. 3-18 Hysteresis voltage of the Bi2O3 sensing membrane after N2O plasma treatment during the pH loop of 7→4→7→10→7 - 82 -Fig. 3-19 Drift voltage of the Bi2O3 sensing membrane after NH3 plasma treatment, then dipped in pH 7 buffer solu

tion for 12 hours - 83 -Fig. 3-20 Drift voltage of the Bi2O3 sensing membrane after N2O plasma treatment, then dipped in pH 7 buffer solution for 12 hours - 83 -Fig. 3-21 The sensitivity and linearity of sodium for Bi2O3 sensing membrane after NH3 plasma treatment (a) As-dep (b)3 min NH3 plasm

a - 84 -Fig. 3-22 The sensitivity and linearity of sodium for Bi2O3 sensing membrane after N2O plasma treatment (a) As-dep (b)1 min N2O plasma - 85 -Fig. 3-23 The sensitivity and linearity of potassium for Bi2O3 sensing membrane after NH3 plasma treatment (a) As-dep (b)3 min NH3 plasma - 86

-Fig. 3-24 The sensitivity and linearity of potassium for Bi2O3 sensing membrane after N2O plasma treatment (a) As-dep (b)1 min N2O plasma - 87 -Fig. 3-25 Enzyme immobilization steps - 88 -Fig. 3-26 The sensitivity and linearity of urea for Bi2O3 sensing membrane after plasma treatment (a) As

-dep (b)3 min NH3 plasma, (c) 1 min N2O plasma - 89 -Fig. 3-27 The sensitivity and linearity of glucose for Bi2O3 sensing membrane after plasma treatment (a) As-dep (b)3 min NH3 plasma, (c) 1 min N2O plasma - 91 -Fig. 3-28 The sensitivity and linearity of creatinine for Bi2O3 sensing membrane

after plasma treatment (a) As-dep (b)3 min NH3 plasma, (c) 1 min N2O plasma - 92 -Fig. 4-1 The Bi2O3 EGFET structure(Si substrate) - 110 -Fig. 4-2 The Bi2O3 EGFET structure(ITO glass substrate) - 110 -Fig. 4-3 XRD of the Bi2O3 film after annealing at 500oC on Si/ITO glass substrate in O2 am

bient for 30 sec - 111 -Fig. 4-4 XPS of the Bi2O3 film after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec. (a)Bi4f, (b) O1s - 112 -Fig. 4-5 2D-AFM of Bi2O3 film after annealing at (a) Si As-dep RMS:1.31nm, (b) Si RTA 500oC RMS:1.84nm, (c) ITO As-dep RMS:1.58nm, (d) ITO

RTA 500oC RMS:2.26nm in O2 ambient for 30 sec - 114 -Fig. 4-6 3D-AFM of Bi2O3 film after annealing at (a) Si As-dep RMS:1.31nm, (b) Si RTA 500oC RMS:1.84nm, (c) ITO As-dep RMS:1.58nm, (d) ITO RTA 500oC RMS:2.26nm in O2 ambient for 30 sec - 115 -Fig. 4-7 FESEM of Bi2O3 film after annealing at

500oC on Si/ITO glass substrate in O2 ambient for 30 sec. (a) As-dep(Si), (b) RTA 500oC(Si), (c) As-dep(ITO), (d) RTA 500oC(ITO) - 117 -Fig 4-8 The sensitivity and linearity of Bi2O3 film after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec. (a) As-dep(Si), (b) RTA 500oC(Si

), (c) As-dep(ITO), (d) RTA 500oC(ITO) - 119 -Fig. 4-9 Hysteresis voltage of Bi2O3 film after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec, during the pH loop of 7→4→7→10→7 - 120 -Fig. 4-10 Drift voltage of Bi2O3 film after annealing at 500oC on Si/ITO glass substrate

in O2 ambient for 30 sec, then dipped in pH 7 buffer solution for 12 hours - 120 -Fig. 4-11 The sensitivity and linearity of sodium after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec - 121 -Fig. 4-12 The sensitivity and linearity of potassium after annealing at 500oC o

n Si/ITO glass substrate in O2 ambient for 30 sec - 122 -Fig. 4-13 Enzyme immobilization steps of Bi2O3 - 122 -Fig. 4-14 The sensitivity and linearity of urea after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec - 123 -Fig.4-15 The sensitivity and linearity of glucose

after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec - 124 -Fig. 4-16 The sensitivity and linearity of creatinine after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec - 124 -Fig. 4-17 EIS spectrum of different concentrations of urea - 125 -Fig.

4-18 The limit of detection(LOD) of urea - 126 -Fig. 4-19 EIS spectrum of different concentrations of glucose - 127 -Fig. 4-20 The limit of detection(LOD) of glucose - 127 -Fig. 4-21 EIS spectrum of different concentrations of creatinine - 128 -Fig. 4-22 The limit of detection(LOD) of c

reatinine - 129 -List of TablesTable. 3-1 The R.S.F of Bi4f - 32 -Table. 2-2 The Bi spices content of the Bi2O3 film after annealing at various temperatures in O2 ambient for 30 sec - 32 -Table. 3-1 The R.S.F of Bi4f - 69 -Table. 3-2 The Bi spices content of the Bi2O3 film after differen

t N2O & NH3 plasma treatment time - 69 -Table. 4-1 The R.S.F of Bi4f - 113 -Table. 4-2 The Bi spices content of the Bi2O3 film after annealing at 500oC on Si/ITO glass substrate in O2 ambient for 30 sec. - 113 -Table. 4-3 The impedance of different concentration urea - 125 -Table. 4-4 Th

e impedance of different concentration glucose - 126-Table. 4-5 The impedance of different concentration creatinine - 128 -