varro目錄的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

國立臺北科技大學 環境工程與管理研究所 胡憲倫所指導 張晁綸的 半導體封裝產品環境衝擊與碳足跡評估-以某半導體公司為例 (2021),提出varro目錄關鍵因素是什麼,來自於生命週期評估(LCA)、碳足跡評估、半導體、淨零排放。

而第二篇論文長庚大學 電子工程學系 王哲麒所指導 江怡霈的 利用製程技術改善偏氟乙烯-三氟乙烯鐵電元件及壓電薄膜電晶體之研究 (2020),提出因為有 偏氟乙烯-三氟乙烯、壓電、鐵電、光電、感測器、四氟化碳、二氧化鈦的重點而找出了 varro目錄的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了varro目錄,大家也想知道這些:

半導體封裝產品環境衝擊與碳足跡評估-以某半導體公司為例

為了解決varro目錄的問題,作者張晁綸 這樣論述:

隨著科技日新月異,對半導體晶片的需求量也日漸提升。近年伴隨著新冠疫情等因素,使全球的半導體供應鏈面臨嚴重的供需失衡,近一步提升台灣半導體產業的國際地位。半導體晶片透過封裝技術確保晶片不受外在因素之影響而正常運作。然而;在半導體製程階段會消耗大量的能資源及用水,造成嚴重的環境影響,因此,本研究鑑於半導體封裝產業在台灣半導體產業鏈的重要性,選定台灣某半導體封裝公司作為研究對象,並以每生產1 mm3的封裝產品(Flip Chip & Lead Frame)作為功能單位,採用生命週期評估方法探討從原物料、運送、製程能資源投入和製程廢棄物處置等各階段相關的環境衝擊及碳足跡,並參考國內外擬定的碳管理策略

進行情境假設,以比較各封裝產品未來的碳排放趨勢。由分析結果得知,每生產1 mm3的Flip Chip 金線產品和Lead Frame金線產品之熱點皆是原料階段所使用的金線線材,其佔比分別約為92.9%和76.3%;Flip Chip銅線產品的熱點為製程階段的電力投入,佔比約為48.8%;Lead Frame銅線產品的熱點為原料階段的Lead Frame投入,佔比為50.7%。Flip Chip 金線及銅線產品、Lead Frame金線及銅線產品的碳足跡熱點皆為製程階段的電力投入,其分別約佔44.3%、68.0%、48.4%和58.0%。情境假設的結果得知,無論是以國內或國外之策略作為參考,隨著

再生能源比例的提升,電力生產時之碳足跡係數皆有明顯的降低趨勢,從2020年至2050年的下降幅度分別約為92%和87%。隨著企業採用之綠電比例逐年提升且結合電力碳足跡的變化趨勢,Flip Chip金線及銅線產品、Lead Frame金線及銅線產品的碳足跡也分別降低約43.3%、66.4%、46.0%和56.7%。綜合本研究之評估結果,鑑別出每生產一功能單位封裝產品之熱點,並結合情境模擬的方式提供案例公司改善建議。後續研究建議可以對不同綠電形式進行情境模擬,並結合經濟因素,探討案例公司達成減排目標所需耗費的成本,藉以作為其未來實務執行之參考依據。

利用製程技術改善偏氟乙烯-三氟乙烯鐵電元件及壓電薄膜電晶體之研究

為了解決varro目錄的問題,作者江怡霈 這樣論述:

目錄指導教授推薦書口試委員審定書誌謝…………………………………………iii中文摘要…………………………………………vAbstract…………………………………………viContents…………………………………………viiFigure Captions…………………………………………xTable Lists…………………………………………xixChapter 1…………………………………………11.1 Sensors…………………………………………11.2 Fundamental Effects of Sensors…………………………………………21.2.1 Piezoelectricit

y…………………………………………21.2.2 Ferroelectricity…………………………………………41.2.3 Photoelectricity…………………………………………51.2.4 Piezo-photoelectricity…………………………………………71.3 P(VDF-TrFE) Copolymers…………………………………………81.4 Motivation of This Study…………………………………………101.5 Methodology…………………………………………121.6 Dissertation Organization……………………

……………………12Chapter 2…………………………………………232.1 Introduction…………………………………………232.2 Experimental…………………………………………262.2.1 Preparation of P(VDF-TrFE) MFM capacitors with CF4-plasma-treated n+-Si wafers…………………………………………262.2.2 Characterization of materials and devices…………………………………………272.3 Results and discussion……

……………………………………292.3.1 Material analyses of P(VDF-TrFE) films…………………………………………292.3.2 Electrical behaviors…………………………………………332.3.3 Chemical reaction schematics and energy band diagrams…………………………………………432.4 Summary…………………………………………45Chapter 3…………………………………………693.1 Introduction…………………………………………693.2 Experim

ental…………………………………………733.2.1 Preparation of P(VDF-TrFE) piezoelectric thin-film transistor with CF4-plasma-treated IGZO channel…………………………………………733.2.2 Characterization of materials and devices…………………………………………753.3 Results and discussion…………………………………………763.3.1 Material analysis of IGZO films and P(VD

F-TrFE) copolymers on IGZO…………………………………………763.3.2 Electrical behaviors of piezoelectric pressure sensors with IGZO TFTs coated by P(VDF-TrFE) copolymers…………………………………………813.3.3 Simulation of current response of CF4-plasma-treated IGZO TFTs with P(VDF-TrFE) copolymer…………………………………………853.4 Summary………………

…………………………86Chapter 4…………………………………………1134.1 Introduction…………………………………………1134.2 Experimental…………………………………………1184.2.1 Synthesis of yttrium-decorated TiO2 photocatalytic…………………………………………1184.2.2 Preparation of Y-TiO2-photocatalytic-doped P(VDF-TrFE) photo-piezoelectric thin-film transistor……………………………………

……1184.2.3 Characterization of materials and devices…………………………………………1204.3 Results and discussion…………………………………………1214.3.1 Material analysis of photocatalyst of yttrium-decorated TiO2 and P(VDF-TrFE) piezoelectric copolymers…………………………………………1214.3.2 Electrical behaviors of photo-piezoelectric pressure

sensors with yttrium-decorated TiO2 doped in P(VDF-TrFE) copolymers…………………………………………1254.3.3 Simulation of current response of IGZO TFTs with yttrium-decorated TiO2 doped in P(VDF-TrFE) copolymer…………………………………………1334.4 Summary…………………………………………134Chapter 5…………………………………………1585.1 Conclusion……………………………………

……1585.2 Future works…………………………………………159Reference List…………………………………………160Appendix…………………………………………179A.1 Annealing temperature on XRD analysis of P(VDF-TrFE)…………………………………………179Publication list…………………………………………181Figure CaptionsFig. 1-1 The stimuli to sensors can be classified into several categories [

1.4].…………………………………………15Fig. 1-2 The application of sensors depending on the input signal on the electronic sensors [1.5].…………………………………………15Fig. 1-3 The schematic of the positive piezoelectric effect and the inverse piezoelectric effect [1.10].…………………………………………16Fig. 1-4 Force-induced charge to the po

larization from dipole orientation, and the polarization with aligned dipoles and domains [1.13].…………………………………………16Fig. 1-5 The typical ferroelectric hysteresis loop which is a description of the behaviors of ferroelectric domains [1.21].…………………………………………17Fig. 1-6 PUND measurement to measure the pol

arization of the ferroelectronics [1.22].…………………………………………17Fig. 1-7 The schematic shows fundamental effect within the piezoelectric materials [1.23].…………………………………………18Fig. 1-8 The phenomenon of electrons exciting to higher energy levels referring as excited states can ionize atoms as photoelectric e

ffect [1.23].…………………………………………18Fig. 1-9 The schematic of the coupling of polarization on piezoelectricity and excitation on photoelectricity under external stimuli has developed [1.38].…………………………………………19Fig. 1-10 The α-, β-, and γ-phases within PVDF and the common copolymers with PVDF [1.51].…………………

………………………19Fig. 1-11 The corresponding P-E curve among α-, β-, and γ-phases within PVDF [1.52].…………………………………………20Fig. 1-12 The XRD spectra of PVDF and its copolymer P(VDF-TrFE), indicating P(VDF-TrFE) appears higher crystallinity [1.54].…………………………………………20Fig. 1-13 The P-E hysteresis loop of PVDF wit

h increasing ratio of TrFE [1.55].…………………………………………21Fig. 1-14 Films with 130 ℃ thermal annealed depicts the optimal of crystallinity and its ferro- and piezo- electricity characteristics [1.64].…………………………………………21Fig. 1-15 The typical structures of α and β phases which reveal that the diploe alignmen

t [1.65].…………………………………………22Fig. 1-16 The decrease in the number of C-F bonds would lessen the remanent polarization of the P(VDF-TrFE) films [1.66].…………………………………………22Fig. 2-1 Illustration of device fabrication process of the P(VDF-TrFE) MFM structurers on CF4-plasma-treated n+-Si wafers. The treated

samples have performed for 1, 3, and 5 minutes.…………………………………………46Fig. 2-2 The XRD patterns of the P(VDF-TrFE) films on the with and without CF4-plasma-treated n+-Si wafers. The degree of crystallinity of is revealed in the figure.…………………………………………46Fig. 2-3 Thickness and contact angle of the P(VDF-T

rFE) on without and with CF4-plasma-treated n+-Si wafers.…………………………………………47Fig. 2-4 The contact angles among four samples, which indicates the wetting abilities of water, and being plasma treated, surface of Si wafers became more hydrophilic.…………………………………………47Fig. 2-5 The XPS peak-area-ratios (PARs)

of C–F2, C–F, and C–FH bonds relating to C–H2 bond, the result is illustrated as a bar chart, too.…………………………………………48Fig. 2-6 (a) The depth profiles of F 1s XPS spectra of the P(VDF-TrFE) on untreated n+-Si wafers, and for the XPS analysis of F 1s at the depth of 15 nm and 300 nm.…………………………………………49F

ig. 2-7 The summarized XPS PARs of C2HF3 bond, which can modify the depth of the incorporation of fluorine.…………………………………………53Fig. 2-8 (a) Fabrication process of CF4-treated P(VDF-TrFE) MFM structures. (b) P-E curves of CF4-treated P(VDF-TrFE) MFM structures. (c) Leakage current of CF4-treated P(VDF-

TrFE) MFM structures.…………………………………………54Fig. 2-9 (a) P-E curves of P(VDF-TrFE) on without and with CF4-treated n+-Si wafers MFM structures. (b) The remanent polarization and the coercive electric field of P(VDF-TrFE) on without and with CF4-treated n+-Si wafers MFM structures.…………………………………………55Fig. 2

-10 (a) Capacitance-electric field (C-E) characteristics at 1MHz and (b) the relationship between frequencies with permittivity (εr) and dielectric loss (tan δ) of the P(VDF-TrFE) MFM structure without and with CF4-plasma-treated n+-Si wafers.…………………………………………56Fig. 2-11 The current-electric field (I

-E) hysteresis-loop curves of P(VDF-TrFE) on the n+-Si bottom electrodes MFM structures.…………………………………………57Fig. 2-12 The switching map of the function between Ec and Ebias of P(VDF-TrFE) on n+-Si bottom electrodes MFM structures.…………………………………………57Fig. 2-13 The leakage current versus electric field (I

-E) curves of the P(VDF-TrFE) on without and with CF4-plasma-treated n+-Si bottom electrodes MFM structures which measure at room temperature.…………………………………………58Fig. 2-14 The leakage current of the MFM capacitors under temperature from 213 K to 273 K of P(VDF-TrFE) on (a) untreated (b) 1-min plasma-t

reated n+-Si wafers.…………………………………………59Fig. 2-15 (a) The relation between current density divided by the electric field (J/E) and 1/kT at (a) negative top electrode biases for samples with and without CF4-plasma treatment.…………………………………………61Fig. 2-16 The charge trapping levels of the F-incorporated P(

VDF-TrFE) films which extracted from the function of Eact and E1/2 at (a) negative bias and (b) positive bias.…………………………………………63Fig. 2-17 The P-V curves of the single pure P(VDF-TrFE) MFM capacitors with thickness for (a) 290, (b) 380, and (c) 520 nm are used to modify the 2Pr of different thickness

of copolymer.…………………………………………64Fig. 2-18 Polarization among the thickness of pristine P(VDF-TrFE) which can be simulated the function about the relation between polarization and polymer thickness.…………………………………………65Fig. 2-19 A three-dimensional (3D) contour plot of 2Pr, which can be clearly determin

e the distribution of 2Pr with the pristine P(VDF-TrFE) for different thickness.…………………………………………65Fig. 2-20 Endurance characteristics for its cycling stabilities testing of P(VDF-TrFE) on without and with CF4 plasma treatment on n+-Si bottom electrodes MFM structures.…………………………………………66Fig. 2-21 The

schematic structure of the chemical reaction within P(VDF-TrFE) before and after CF4-plasma treating on the n+-Si bottom electrodes, respectively.…………………………………………67Fig. 2-22 The energy band diagrams at thermal equilibrium state of the Al/P(VDF-TrFE)/n+-Si MFM structures.…………………………………………68Fig. 3-1 Il

lustration of device fabrication process of the P(VDF-TrFE) piezoelectric pressure sensors on CF4-plasma-treated IGZO channel as TFTs. The treated samples have performed for 1, 3, and 5 minutes.…………………………………………88Fig. 3-2 (a) Surface O 1s XPS spectra of untreated and treated IGZO films (b) Bar chart

of XPS peak-area-ratios (PARs) for M-O, Vo, and M-OH within IGZO, respectively.…………………………………………89Fig. 3-3 F 1s XPS spectra of (a) untreated and CF4 plasma treated for (b) 1imn, (c) 3min, and (d) 5min on IGZO.…………………………………………90Fig. 3-4 O 1s XPS spectra at depth for 10 nm from surface of (a) untreated

and CF4 plasma treated for (b) 1imn, (c) 3min, and (d) 5min on IGZO.…………………………………………91Fig. 3-5 In 3d XPS spectra at surface of (a) untreated and CF4 plasma treated for (b) 1imn, (c) 3min, and (d) 5min on IGZO.…………………………………………93Fig. 3-6 Ga 2p XPS spectra at surface of (a) untreated and CF4 plasma tr

eated for (b) 1imn, (c) 3min, and (d) 5min on IGZO.…………………………………………95Fig. 3-7 Zn 2p XPS spectra at surface of (a) untreated and CF4 plasma treated for (b) 1imn, (c) 3min, and (d) 5min on IGZO.…………………………………………97Fig. 3-8 The SIMS depth profiles of the range from CF4-plasma-treated IGZO films to the su

rface of SiO2.…………………………………………99Fig. 3-9 The XRD patterns analysis of P(VDF-TrFE) copolymers on without and with CF4-plasma-treated IGZO films.…………………………………………99Fig. 3-10 C 1s XPS spectra of P(VDF-TrFE) layers on (a) untreated and (b) treated IGZO films under CF4 plasma treating times for 1 minute.…

………………………………………100Fig. 3-11 Surface morphology AFM images of the with and without CF4-plasma-treated IGZO.…………………………………………102Fig. 3-12 (a) The AFM images of the spin-coating P(VDF-TrFE) (a) before and (b) after thermal annealing on without and with CF4-plasma-treated IGZO films.…………………………………………103Fi

g. 3-13 The OM image of the pressure sensing setting of IGZO TFTs with P(VDF-TrFE) piezoelectric sensors during the measurement tests.…………………………………………104Fig. 3-14 The typical IDS-VBG transfer characteristics at VDS= 0.1 V of the TFTs with CF4 plasma untreated and treated IGZO channel.………………………………………

…104Fig. 3-15 The subthreshold slope (S.S.) and the field-effect mobility (μFE) of CF4-plasma-treated IGZO TFTs.…………………………………………105Fig. 3-16 The typical IDS-VBG transfer characteristics at VDS= 0.1 V of the TFTs with CF4 plasma (a) untreated and (b) 1-min, (c) 3-min and (d) 5-min treated IGZO channe

l before and after P(VDF-TrFE) spin-coated.…………………………………………106Fig. 3-17 The output characteristics (IDS-VDS) of CF4-plasma (a) untreated (b) 1-min, (c) 3-min and (d) 5-min treated IGZO TFTs, which were measured at VBG-Vt = 1 to 7 V.…………………………………………107Fig. 3-18 The linear IDS-VBG characteristics of (

a) untreated and (b) 1-min treated CF4-plasma on IGZO TFTs of piezoelectric pressure sensors under with and without vertical force, the range of force applied on the P(VDF-TrFE) is from 0.1 - 0.5 kg.…………………………………………108Fig. 3-19 The statistics of current response among untreated and treated IGZO TFTs

as P(VDF-TrFE) pressure sensors under different applying forces from the IDS-VBG characteristics.…………………………………………110Fig. 3-20 The current response with press/release cycling tests of untreated and 1min CF4-plasma-treated IGZO TFTs with P(VDF-TrFE) piezoelectric pressure sensors.…………………………………………110F

ig. 3-21 The schematic structure of the chemical reaction of P(VDF-TrFE) piezoelectric pressure sensors without and with CF4-plasma treating on the IGZO channel, and the sensors before and after force applying.…………………………………………111Fig. 3-22 The experimental data and the fitting simulation data of (a)

untreated and (b) CF4-plasma-treated for 1min on IGZO TFT being applying load which manifesting a corresponding curve.…………………………………………112Fig. 4-1 (a) The SEM image of yttrium-decorated TiO2 NFs and (b) Schematic and measurement of with Y-decorated TiO2 doped P(VDF-TrFE) on IGZO piezophotoelectric se

nsor.…………………………………………136Fig. 4-2 (a) Setting of photo-thermal annealing process of photo-thermal annealing on Y-decorated TiO2 doped P(VDF-TrFE) copolymers. (b) The difference in setting temperature and actual temperature.…………………………………………137Fig. 4-3 The UV-Visible absorption spectroscopy which prese

nts the copolymers within the range in visible light.…………………………………………138Fig. 4-4 The XRD patterns analysis of P(VDF-TrFE) copolymers without and with Y-decorated TiO2 NFs at 1, 5, and 10 ppm.…………………………………………138Fig. 4-5 (a) The topographical SEM images which reveals the crystallinity of P(VDF-TrFE).

(b) The energy-dispersive X-ray spectroscopy (EDX) spectrums of the P(VDF-TrFE) copolymers with Y-decorated TiO2 doped.…………………………………………139Fig. 4-6 The FTIR spectra of Y-decorated TiO2 doped P(VDF-TrFE) which is corroborating with the XRD pattern.…………………………………………140Fig. 4-7 The electrical characteris

tics of the MFM capacitors with the effect of heat and light on photocatalysts doped P(VDF-TrFE) film.…………………………………………141Fig. 4-8 The P-E ferroelectric characteristics of P(VDF-TrFE) doped with Y-decorated TiO2 films and (b) The leakage current of the Y-decorated TiO2 doped P(VDF-TrFE) films.…………………

………………………142Fig. 4-9 The IDS-VBG curves of IGZO TFTs for (a) non-doped under the illumination from 0, 500, 1000, and 1500 lux fore from 0-400 g in log scale. …………………………………………143Fig. 4-10 IDS-VBG transfer characteristics with Y-TiO2 (a) non-doped and (b) 1ppm in linear scale at pressure of 400g, w

here the insets figures are the enlarged images version of the linear curves.…………………………………………147Fig. 4-11 The 3D bar plots of current response before and after applying illumination under applying force at (a)100g and (b)200g.…………………………………………149Fig. 4-12 The responsivity and relative change in R of

IGZO TFTs without and with Y-decorated TiO2 doped P(VDF-TrFE) copolymers increases with the applying illumination under (a) 0g and (b)100g.…………………………………………151Fig. 4-13 (a) The response of photocurrent under illumination with applying force as the increasing bright of color from 0g to 400g among the

IGZO TFTs without and with Y-decorated TiO2 doped P(VDF-TrFE).…………………………………………154Fig. 4-14 The experimental data and the fitting simulation data for (a) no doping and (b) 5ppm Y-TiO2 incorporated films from the equation for VG>15V, manifesting a corresponding curve.…………………………………………157Table ListsTabl

e 2-1 All the material properties and electrical characteristics of the P(VDF-TrFE) on with and without CF4-plasma-treated n+-Si wafers MFM structures are summarized.…………………………………………66Table 4-1 The corresponding with wavenumber of FTIR spectra to crystalline phase.…………………………………………140