機器學習python ptt的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

機器學習python ptt的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦洪錦魁寫的 Python - 最強入門邁向數據科學之路:王者歸來(全彩印刷第三版)【首刷獨家限量贈品-程式語言濾掛式咖啡包】 和洪錦魁的 Python-最強入門邁向數據科學之路:王者歸來(全彩印刷第三版)都 可以從中找到所需的評價。

另外網站李宏毅機器學習ptt的推薦與評價 - 最新趨勢觀測站也說明:關於李宏毅機器學習ptt 在李宏毅机器学习PTT的理解(1)深度学习的介绍- 稀土掘金的評價; 關於李宏毅機器學習ptt 在[問題] 李宏毅機器學習- NTUcourse - PTT Web 的評價 ...

這兩本書分別來自深智數位 和深智數位所出版 。

國立成功大學 高階管理碩士在職專班(EMBA) 馬瀰嘉所指導 彭季堯的 應用機器學習預測目標客戶–以E公司為例 (2021),提出機器學習python ptt關鍵因素是什麼,來自於機器學習、混淆矩陣、銷售漏斗。

最後網站台灣人工智慧學校ptt則補充:我們為台灣產業量身打造一套紮實而完整的AI課程,從基礎工具Python與理論,到機器學習與深度學習等關鍵技術課程。 所上到的課程有python、機率統計與R ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了機器學習python ptt,大家也想知道這些:

Python - 最強入門邁向數據科學之路:王者歸來(全彩印刷第三版)【首刷獨家限量贈品-程式語言濾掛式咖啡包】

為了解決機器學習python ptt的問題,作者洪錦魁 這樣論述:

Python最強入門 邁向數據科學之路 王者歸來 第3版     【首刷獨家限量贈品- Python 濾掛式咖啡包】   數量:限量300包   咖啡風味:花神+黃金曼特寧   研磨刻度:40刻度   填充刻度:10g   製造/有效日期,18個月     ★★★★★【33個主題】、【1200個Python實例】★★★★★   ★★★★★【1500個重點說明】★★★★★   ★★★★★【210個是非題】、【210個選擇題】、【291個實作題】★★★★★      Python語言是基礎科學課程,撰寫這本書時採用下列原則。   1:強調Python語法內涵與精神。   2:用精彩程式實例解說

。   3:科學與人工智慧知識融入內容。   4:章節習題引導讀者複習與自我練習。     相較於第2版,第3版更加強數據科學與機器學習的內容,與相關模組的操作,同時使用更細緻的實例,增加下列知識:     ★解說在Google Colab雲端開發環境執行   ☆解說使用Anaconda Spider環境執行   ★PEP 8,Python設計風格,易讀易懂   ☆Python語法精神、效能發揮極致   ★遞迴函數徹底解說   ☆f-strings輸出徹底解說   ★電影院訂位系統   ☆靜態與動態2D ~ 3D圖表   ★Numpy數學運算與3D繪圖原理   ☆Pandas操作CSV和Exc

el   ★Sympy模組與符號運算   ☆機器學習、深度學習所需的數學與統計知識   ★線性迴歸   ☆機器學習 – scikit-learn   ★KNN演算法、邏輯迴歸、線性與非線性支援向量機   ☆決策樹   ★隨機森林樹   ☆其他修訂小細節超過100處     多次與教育界的朋友相聚,談到電腦語言的發展趨勢,大家一致公認Python已經是當今最重要的電腦語言了,幾乎所有知名公司,例如:Google、Facebook、…等皆已經將此語言列為必備電腦語言。了解許多人想學Python,市面上的書也不少了,但是許多人買了許多書,但是學習Python路上仍感障礙重重,原因是沒有選到好的書籍,

市面上許多書籍的缺點是:     ◎Python語法講解不完整   ◎用C、C++、Java觀念撰寫實例   ◎Python語法的精神與內涵未做說明   ◎Python進階語法未做解說   ◎基礎實例太少,沒經驗的讀者無法舉一反三   ◎模組介紹不足,應用範圍有限     許多讀者因此買了一些書,讀完了,好像學會了,但到了網路看專家撰寫的程式往往看不懂。     就這樣我決定撰寫一本用豐富、實用、有趣實例完整且深入講解Python語法的入門書籍。其實這本書也是目前市面上講解Python書籍中語法最完整,當讀者學會Python後,本書將逐步帶領讀者邁向數據科學、機器學習之路。Python以簡潔著

名,語法非常活,同時擁有非常多豐富、實用的模組,本書筆者嘗試將Python語法的各種用法用實例解說,同時穿插使用各種模組,以協助讀者未來可以更靈活使用Python,以奠定讀者邁向更高深學習的紮實基礎。     本書以約950個程式實例和約250個一般實例,講解紮實的Python語法,同時輔助約210道是非題、210道選擇題與約291道程式實作題。讀者研讀完此書,相信可以學會下列知識:     ★內容穿插說明PEP 8風格,讀者可由此養成設計符合PEP 8風格的Python程式,這樣撰寫的程式可以方便自己與他人閱讀。   ☆拋棄C、C++、Java語法思維,將Python語法、精神功能火力全開

  ★人工智慧基礎知識融入章節內容   ☆從bytes說起、編碼(encode)、解碼(decoding),到精通串列(list)、元組(tuple)、字典(dict)、集合(set)   ★完整解說Unicode字符集和utf-8依據Unicode字符集的中文編碼方式   ☆從小型串列、元組、字典到大型數據資料的建立   ★生成式(generator)建立Python資料結構,串列(list)、字典(dict)、集合(set)   ☆經緯度計算地球任2城市之間的距離,學習取得地球任意位置的經緯度   ★萊布尼茲公式、尼拉卡莎、蒙地卡羅模擬計算圓週率   ☆徹底解說讀者常混淆的遞迴式呼叫。  

 ★基礎函數觀念,也深入到嵌套、lambda、Decorator等高階應用   ☆Google有一篇大數據領域著名的論文,MapReduce:Simplified Data Processing on Large Clusters,重要觀念是MapReduce,筆者將對map( )和reduce( )完整解說,更進一步配合lambda觀念解說高階應用   ★設計與應用自己設計的模組、活用外部模組(module)   ☆設計加密與解密程式   ★Python處理文字檔案/二元檔案的輸入與輸出   ☆檔案壓縮與解壓縮   ★程式除錯(debug)與異常(exception)處理   ☆檔案讀寫與目

錄管理   ★剪貼簿(clipboard)處理   ☆正則表達式(Regular Expression)   ★遞廻式觀念與碎形(Fractal)   ☆影像處理與文字辨識,更進一步說明電腦儲存影像的方法與觀念   ★認識中文分詞jieba與建立詞雲(wordcloud)設計   ☆GUI設計 - 實作小算盤   ★實作動畫與遊戲(電子書呈現)   ☆Matplotlib中英文靜態與動態2D ~ 3D圖表繪製   ★說明csv和json檔案   ☆繪製世界地圖   ★台灣股市資料擷取與圖表製作   ☆Python解線性代數   ★Python解聯立方程式   ☆Python執行數據分析   ★

科學計算與數據分析Numpy、Pandas   ☆網路爬蟲   ★人工智慧破冰之旅 – KNN演算法   ☆機器學習 – 線性迴歸   ★機器學習 – scikit-learn   ☆KNN演算法、邏輯迴歸、線性與非線性支援向量機   ★決策樹   ☆隨機森林樹   ★完整函數索引,未來可以隨時查閱

應用機器學習預測目標客戶–以E公司為例

為了解決機器學習python ptt的問題,作者彭季堯 這樣論述:

經理人如果能夠精準預測潛在目標客戶,代表企業可以快速並正確安排為了成交客戶的各項資源投入。但傳統透過業務人員判斷是否為目標客戶之銷售方式,因為不容易有共同的認定標準而無法在組織間推廣,也因為業務人員個性、背景、喜好不同,無從談起預測的一致性和準確性。本研究藉由E公司客戶關係管理系統中所記錄的近2年內商機資料,使用機器學習的方法進行資料分析,希望能夠在E公司B2B的商業模式下,建置高品質的潛在成交客戶預測模型。藉由適當的模型推薦潛在成交客戶來取代人為判斷,可幫助經理人對企業資源以及行銷活動加以合理運用及分配,能夠降低營運成本並增加企業獲利。本研究將E公司提供之商機樣本資料,經過資料前處理後,使

用隨機森林、羅吉斯迴歸、套索迴歸以及支援向量機等機器學習方法,以Python 程式語言建置機器學習模型並比較精確率、召回率、F1-分數等模型績效指標。本研究發現若E公司追求精確率以隨機森林模型績效較佳,若追求召回率則以支援向量機模型績效較佳。由套索迴歸係數顯示影響成交勝算的變數有「所在區域」、「上市櫃資訊」、「員工人數分箱」,所在區域結果顯示客戶為高雄市成交的勝算大於台北市、台北市成交的勝算大於台中市。上市櫃資訊結果顯示客戶為興櫃成交的勝算大於上櫃、上櫃成交的勝算大於一般企業。員工人數分箱結果顯示客戶公司是「員工人數2級」成交的勝算大於「員工人數1級」,「員工人數2級」和「員工人數3級」的客戶

成交勝算相近。 本研究成果顯示,E公司可以採用適當的機器學習模型,在新商機進入E公司客戶關係管理系統中時,第一時間識別潛在成交客戶,除幫助經理人優先投入銷售資源外,E公司更能以此成果為基礎,持續推動數位優化達成數位轉型,建立競爭對手難以模仿的數位優勢。

Python-最強入門邁向數據科學之路:王者歸來(全彩印刷第三版)

為了解決機器學習python ptt的問題,作者洪錦魁 這樣論述:

★★★★★【33個主題】、【1200個Python實例】★★★★★ ★★★★★【1500個重點說明】★★★★★ ★★★★★【210個是非題】、【210個選擇題】、【291個實作題】★★★★★     Python語言是基礎科學課程,撰寫這本書時採用下列原則。   1:強調Python語法內涵與精神。   2:用精彩程式實例解說。   3:科學與人工智慧知識融入內容。   4:章節習題引導讀者複習與自我練習。       相較於第2版,第3版更加強數據科學與機器學習的內容,與相關模組的操作,同時使用更細緻的實例,增加下列知識:     ★解說在Google Colab雲端開發環境執行   ☆

解說使用Anaconda Spider環境執行   ★PEP 8,Python設計風格,易讀易懂   ☆Python語法精神、效能發揮極致   ★遞迴函數徹底解說   ☆f-strings輸出徹底解說   ★電影院訂位系統   ☆靜態與動態2D ~ 3D圖表   ★Numpy數學運算與3D繪圖原理   ☆Pandas操作CSV和Excel   ★Sympy模組與符號運算   ☆機器學習、深度學習所需的數學與統計知識   ★線性迴歸   ☆機器學習 – scikit-learn   ★KNN演算法、邏輯迴歸、線性與非線性支援向量機   ☆決策樹   ★隨機森林樹   ☆其他修訂小細節超過100處

    多次與教育界的朋友相聚,談到電腦語言的發展趨勢,大家一致公認Python已經是當今最重要的電腦語言了,幾乎所有知名公司,例如:Google、Facebook、…等皆已經將此語言列為必備電腦語言。了解許多人想學Python,市面上的書也不少了,但是許多人買了許多書,但是學習Python路上仍感障礙重重,原因是沒有選到好的書籍,市面上許多書籍的缺點是:     ◎Python語法講解不完整   ◎用C、C++、Java觀念撰寫實例   ◎Python語法的精神與內涵未做說明   ◎Python進階語法未做解說   ◎基礎實例太少,沒經驗的讀者無法舉一反三   ◎模組介紹不足,應用範圍有限

       許多讀者因此買了一些書,讀完了,好像學會了,但到了網路看專家撰寫的程式往往看不懂。        就這樣我決定撰寫一本用豐富、實用、有趣實例完整且深入講解Python語法的入門書籍。其實這本書也是目前市面上講解Python書籍中語法最完整,當讀者學會Python後,本書將逐步帶領讀者邁向數據科學、機器學習之路。Python以簡潔著名,語法非常活,同時擁有非常多豐富、實用的模組,本書筆者嘗試將Python語法的各種用法用實例解說,同時穿插使用各種模組,以協助讀者未來可以更靈活使用Python,以奠定讀者邁向更高深學習的紮實基礎。        本書以約950個程式實例和約250個

一般實例,講解紮實的Python語法,同時輔助約210道是非題、210道選擇題與約291道程式實作題。讀者研讀完此書,相信可以學會下列知識:     ★內容穿插說明PEP 8風格,讀者可由此養成設計符合PEP 8風格的Python程式,這樣撰寫的程式可以方便自己與他人閱讀。   ☆拋棄C、C++、Java語法思維,將Python語法、精神功能火力全開   ★人工智慧基礎知識融入章節內容   ☆從bytes說起、編碼(encode)、解碼(decoding),到精通串列(list)、元組(tuple)、字典(dict)、集合(set)   ★完整解說Unicode字符集和utf-8依據Unico

de字符集的中文編碼方式   ☆從小型串列、元組、字典到大型數據資料的建立   ★生成式(generator)建立Python資料結構,串列(list)、字典(dict)、集合(set)   ☆經緯度計算地球任2城市之間的距離,學習取得地球任意位置的經緯度   ★萊布尼茲公式、尼拉卡莎、蒙地卡羅模擬計算圓週率   ☆徹底解說讀者常混淆的遞迴式呼叫。   ★基礎函數觀念,也深入到嵌套、lambda、Decorator等高階應用   ☆Google有一篇大數據領域著名的論文,MapReduce:Simplified Data Processing on Large Clusters,重要觀念是Ma

pReduce,筆者將對map( )和reduce( )完整解說,更進一步配合lambda觀念解說高階應用   ★設計與應用自己設計的模組、活用外部模組(module)   ☆設計加密與解密程式   ★Python處理文字檔案/二元檔案的輸入與輸出   ☆檔案壓縮與解壓縮   ★程式除錯(debug)與異常(exception)處理   ☆檔案讀寫與目錄管理   ★剪貼簿(clipboard)處理   ☆正則表達式(Regular Expression)   ★遞廻式觀念與碎形(Fractal)   ☆影像處理與文字辨識,更進一步說明電腦儲存影像的方法與觀念   ★認識中文分詞jieba與建立

詞雲(wordcloud)設計   ☆GUI設計 - 實作小算盤   ★實作動畫與遊戲(電子書呈現)   ☆Matplotlib中英文靜態與動態2D ~ 3D圖表繪製   ★說明csv和json檔案   ☆繪製世界地圖   ★台灣股市資料擷取與圖表製作   ☆Python解線性代數   ★Python解聯立方程式   ☆Python執行數據分析   ★科學計算與數據分析Numpy、Pandas   ☆網路爬蟲   ★人工智慧破冰之旅 – KNN演算法   ☆機器學習 – 線性迴歸   ★機器學習 – scikit-learn   ☆KNN演算法、邏輯迴歸、線性與非線性支援向量機   ★決策樹

  ☆隨機森林樹   ★完整函數索引,未來可以隨時查閱     圖書資源說明   本書籍的所有程式實例可以在深智公司網站下載。    本書前面20個章節均附是非與選擇的習題解答,下列是示範輸出畫面。     教學資源說明   教學資源有教學投影片(內容超過1500頁)、本書實例、習題解答以及相關附錄的電子書。     本書習題實作題約285題均有習題解答,如果您是學校老師同時使用本書教學,歡迎與本公司聯繫,本公司將提供習題解答。請老師聯繫時提供任教學校、科系、Email、和手機號碼,以方便本公司業務單位協助您。     註:教學資源不提供給一般讀者,請原諒。     讀者資源說明   請至本公

司網頁deepmind.com.tw下載本書程式實例與習題所需的相關檔案,以及相關目錄資源,這些目錄以Word檔案呈現。     臉書粉絲團   歡迎加入:王者歸來電腦專業圖書系列         歡迎加入:iCoding程式語言讀書會(Python, Java, C, C++, C#, JavaScript, 大數據, 人工智慧等不限),讀者可以不定期獲得本書籍和作者相關訊息。          歡迎加入:穩健精實AI技術手作坊