自行車輪框輪胎搭配的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

另外網站CADEX-超高性能自行車零組件品牌-全新發表 - 捷安特也說明:CADEX零組件系列的發表包含全新的輪組、輪胎和坐墊。消費者可以從今年九月開始購買到這些新系列產品,同時,他們也將會搭配在2020年Giant和Liv的限量 ...

中原大學 電子工程研究所 繆紹綱所指導 鄭宜雯的 在不平衡數據集下改善鋁壓鑄件缺陷檢測性能的探討 (2020),提出自行車輪框輪胎搭配關鍵因素是什麼,來自於鋁壓鑄、缺陷檢測、深度學習神經網路、方向梯度直方圖、VGG16、支持向量機、不平衡數據、模板比對。

而第二篇論文建國科技大學 電子工程系暨研究所 陳宏明、趙介雷所指導 陳威宇的 全彩LED輪型顯示器控制與實現 (2015),提出因為有 單晶片微電腦、RGB LED燈組、旋轉輪顯示器、視覺暫留的重點而找出了 自行車輪框輪胎搭配的解答。

最後網站可以安裝寬胎在我的輪框上嗎?登山車輪框與外胎搭配解密。則補充:各類騎乘的搭配建議: · XC 輪框內寬介於20-25mm 建議胎寬為2-2.25英吋 · Trail 輪框內寬介於23-27mm · Enduro/All-mountain/DH/Freeride 輪框內寬介於27-35mm · Plus-size ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了自行車輪框輪胎搭配,大家也想知道這些:

在不平衡數據集下改善鋁壓鑄件缺陷檢測性能的探討

為了解決自行車輪框輪胎搭配的問題,作者鄭宜雯 這樣論述:

目錄摘要 iAbstract ii目錄 iv圖目錄 viii表目錄 xiii第一章 緒論 11-1 研究動機與目的 11-2 相關文獻探討 41-2-1 使用HOG提取缺陷特徵 41-2-2 使用VGG16做為缺陷檢測 81-2-3 使用模板比對做為缺陷檢測 111-2-4 與本研究拍攝環境最相似的文獻 111-2-5 總結-選擇辨識方法 151-2-6 不平衡數據相關探討 151-2-7 使用SVM懲罰函數解決不平衡數據 181-2-8 ORB影像對齊 201-3 論文架構 22第二章 系統架構 232-1 實驗流程 232-2 實驗設備

介紹 252-3 背景相關知識 252-3-1 HOG 262-3-2 SVM 292-3-3 CNN 322-3-4 VGG網路 352-3-5 TensorFlow模組 37第三章 實驗方法 383-1 Dataset 383-2 交叉訓練 403-3 數據擴增 413-4 HOG特徵提取 423-5 訓練VGG16網路 443-6 解決不平衡數據集問題-調整SVM參數 473-7 模板比對 483-7-1 影像對齊法 493-7-2 待對齊影像之影像二值化 513-7-3 影像相減 52第四章 實驗結果與討論 544-1 擴增缺

陷數據 544-2 缺陷偵測效能的評估標準 554-3 HOG分割尺寸的選擇 564-4 HOG歸一化以及SVM核函數搭配 614-4-1 正常及缺陷比例為2:1的實驗結果 614-4-2 增加數據數量後的實驗結果 674-4-3 正常及缺陷比例為5:1的實驗結果 694-5 加入F1-score計算結果 724-6 VGG16分類結果 734-7 模板比對結果 774-7-1 畫面1實驗結果 774-7-2 畫面2實驗結果 804-7-3 模板比對法結果與討論 824-8 三種辨識成果討論 83第五章 結論與未來展望 855-1 結論 855

-2 未來展望 86參考文獻 87圖目錄圖1. 鋁壓鑄件環境參數[1] 2圖2. 各種缺陷種類。(a)表面充填不良;(b)缺裂[2];(c)燒付;(d)裂痕[2];(e)正常打洞;(f)變形,模具內pin腳斷裂,打洞失敗。 2圖3. 缺陷葉片的梯度方向直方圖[5]。(a)位置I處損壞葉片的HOG;(b) 位置I的未損壞葉片HOG;(c)位置II中損壞葉片的HOG;(d)位置II中損壞葉片的HOG。 5圖4. 實驗渦輪葉片檢測結果[5]。(a)所有葉片完好無損;(b)~(d)有缺陷葉片。 6圖5. 紡織品缺陷檢測的訓練流程圖[6] 7圖6. 紡織品缺陷檢測的測試流程圖[6] 7

圖7. 木材缺陷[14]。(a)木材死節;(b)木材活節;(c)藍色污漬;(d)裂縫;(e)褐色污漬;(f)瀝青條紋。 8圖8. 車輪胎面圖像採集系統[22] 12圖9. 車輪胎面影像[22] 12圖10. 車輪胎面缺陷檢測架構圖[22] 12圖11. 車輪胎面缺陷影像[22] 13圖12. 定位的區域[22]。(a)正樣本;(b)負樣本。 14圖13. 追蹤騎自行車的男孩。在第61個和第72個畫面通過ORB功能,追蹤器準確地捕捉到了小男孩。藍色橢圓表示當下畫面中對象的位置。 21圖14. 追蹤行人,藍色橢圓表示當下畫面中對象的位置。 21圖15. 本研究的系統流程圖 23圖

16. 本研究所採用的工業攝影機[38-39] 25圖17. 計算點A梯度的遮罩:梯度值可寫成(11)式,梯度方向可寫成(12)式。 26圖18. HOG的核心概念為將圖像分成細胞(cell),再將細胞組合成圖像塊(block)。 27圖19. 偵測正常與缺陷物件的HOG流程圖[參考40] 27圖20. 不同圖像塊歸一化方法的結果[40],其中的DET為檢測錯誤權衡效果(Detection Error Tradeoff)。 29圖21. SVM平面硬間隔分類 30圖22. SVM平面軟間隔分類,允許某些樣本可不滿足規則。 31圖23. SVM分類器不一定為線性的示意圖。(a)非線

性;(b)二維平面。 32圖24. CNN架構圖[41] 33圖25. 卷積運算示意圖 33圖26. 池化運算示意圖(參考[42]重新繪製) 34圖27. 全連接層分類出結果(參考[43]重新繪製) 34圖28. 3×3卷積的使用。(a) 5×5可被3×3卷積直接取代;(b)假設輸入8×8的特徵(以一維空間表示),8×8也可以輕鬆地分成3×3。 36圖29. 數據集。(a)畫面1;(b)畫面2。 38圖30. 數據集內所有缺陷影像。(a)(b)燒付;(c)~(e)變形;其餘皆為充填不良。 39圖31. 交叉訓練示意圖 40圖32. 數據擴增。(a)原始影像;(b)經過扭曲的影

像;(c)經過平移的影像;(d)經過水平翻轉的影像。 41圖33. HOG分割示意圖。(a)每個影像可分成8×8的細胞,每個細胞皆會計算出一個梯度值[52];(b)梯度方向可分成9組,經過統計可得出有9個bin的直方圖[53]。 43圖34. 將2×2的細胞組合成一個圖像塊 44圖35. VGG16架構圖[54] 45圖36. 一般分類情況,每種類別的比例將近為1:1。 47圖37. 特殊狀況,某類別數量少,形成這種數據不平衡的關係。 48圖38. 模板比對流程圖 49圖39. SIFT、SURF、BRIEF (with FAST)和ORB (oFAST + rBRIEF)的匹配

性能。ORB的性能優於其他做法[56]。 51圖40. 使用ORB影像對齊方法的一個結果 52圖41. 影像二值化。(a) ORB影像對齊後的結果,經旋轉或平移後空掉的部分將以黑色補上;(b)上圖若直接與模板影像做影像相減會產生誤差;(c)影像二值化,以色彩1為門檻值,若低於1則顯現黑色,若高於1則顯現白色;(d)將圖像中黑色部分貼上模板的影像,再轉回原始圖像顏色。 53圖42. 畫面2裁成缺陷比例較大的大小。(a)正常鑄件影像;(b)缺陷鑄件影像,紅框為缺陷位置。 54圖43. 藉由調整亮度來增加缺陷數據。(a)原圖;(b)將原圖調亮10%;(c)將原圖調暗10%。 56圖44.

固定圖像塊尺寸為2×2 (細胞),各種細胞尺寸所得的準確率。 58圖45. HOG計算圖像塊數量示意圖 59圖46. 各種細胞尺寸和塊尺寸搭配的特徵維度 60圖47. 固定細胞尺寸為16×16 (像素),各種圖像塊尺寸所得的準確率。 61圖48. 固定圖像塊尺寸為4×4 (細胞),各種細胞尺寸所得的準確率。 61圖49. 所有測試結果的比較直方圖 62圖50. 正常與缺陷數據2:1,C = 1,四種歸一化方式的準確率、召回率和精確率。 64圖51. 正常與缺陷數據2:1,C = 100,四種歸一化方式的準確率、召回率和精確率。 67圖52. 正常與缺陷數據2:1,使用L1歸一化

,kernal = RBF,C從0.1~10000的準確率、召回率和精確率。 67圖53. 增大數據量後,正常與缺陷數據2:1,四種歸一化方式的準確率、召回率和精確率。 69圖54. 正常與缺陷數據5:1,四種歸一化方式的準確率、召回率和精確率。 72圖55. RBF核函數,懲罰函數的走向。 73圖56. 框取正常與缺陷標籤。(a)缺陷件影像,紫色框表示標籤為Defect;(b)正常件影像,由於整張皆是正常件,於是隨機框取,藍色框表示標籤為Normal。 75圖57. 損失函數。(a)VGG16損失函數。(b)一般損失函數。 77圖58. 影像相減後的差值圖。(a)編號002的正常

鑄件影像-模板影像的差值圖,幾乎是一片黑;(b)缺陷部位較小的缺陷影像-模板影像的差值圖,缺陷較無法以肉眼看出;(c)缺陷部位較大的缺陷影像-模板影像的差值圖,缺陷部位隱隱若現;(d)增加(c)的對比度,將缺陷部位突顯出來。 79圖59. 正常鑄件影像-模板影像,差值為0的個數有將近1,800,000個。 80圖60. 缺陷鑄件影像-模板影像,差值為0的個數僅有將近1,300,000個左右。 80圖61. 畫面1做影像相減後差值為0的個數走向 81圖62. 畫面2做影像相減後差值為0的個數走向 82圖63. 將畫面2裁剪為止有缺陷部位的大小,紅圈為缺陷位置。 82圖64. 畫面2做

影像相減後差值為0的個數走向 83表目錄表1. 測試結果統計表[5] 6表2. Mix-FCN網路與其他網路的指標值[14] 9表3. 車輪踏面缺陷定位測試結果[22] 14表4. 混淆矩陣 17表5. SE-gcForest、原始gcForest [29]、SMOTEBagging [28]和SMOTEBoost [27]的F1效能[26]。 18表6. 使用SVM、P-SVM和改進的P-SVM方法對帕金森病數據集和輸血服務中心數據集的準確率[30]。 19表7. VGG各模型配置[44] 35表8. A模型與A-LRN模型性能比較[44] 37表9. 數據集影像數量 3

8表10. 修改過後的VGG16層數圖 46表11. 擴增後的數據集影像數量 56表12. 缺陷偵測混淆矩陣 56表13. 測試HOG分割尺寸的數據量(非實際數量,而是8次交叉驗證的等效總數量) 58表14. 固定圖像塊尺寸為2×2和4×4,各個細胞尺寸的特徵維度。 60表15. 正常與缺陷數據2:1的訓練及測試張數 62表16. 正常與缺陷數據2:1,C = 1時結果。 63表17. 正常與缺陷數據2:1,C = 100時結果。 65表18. 增大數據量後,正常與缺陷數據2:1的訓練及測試張數。 68表19. 增大數據量,正常與缺陷數據2:1結果。 68表20. 正常與缺

陷數據5:1的訓練及測試張數 71表21. 正常與缺陷數據5:1,C = 1時結果。 71表22. 最終結果混淆矩陣 74表23. VGG16數據集 75表24. VGG16結果混淆矩陣 77表25. 模板比對使用數據集 78表26. 畫面1做影像相減的實驗結果 81表27. 畫面1做影像相減的實驗結果 83表28. 三種辨識方法的速度 85

全彩LED輪型顯示器控制與實現

為了解決自行車輪框輪胎搭配的問題,作者陳威宇 這樣論述:

本論文作品是以單晶片微電腦控制單排RGB LED燈組,架設於腳踏車輪圈上,並以直流馬達帶動自行車之輪圈框架來模擬輪胎旋轉,藉此達到旋轉輪型顯示器之顯示效果。本作品主要特色是以少量(32顆)RGB LED,利用人眼視覺暫留效果轉出圓盤狀之全彩顯示畫面。除了增加輪弧形之顯示視覺效果外,亦提高騎乘者在夜間行駛的安全保障,並可做為廣告之宣傳或自行車隊之辨識。本顯示器系統是以Microchip單晶片微控制器PIC32MX470F512H做為主要控制核心,並搭配四顆12bits之PWM LED驅動IC-TLC5951來控制RGB LED全彩顯示之變化,並以磁感測器來固定影像顯示位置之控制。而本作品可利用

藍芽模組搭配手機,進行可遠距離切換影像之功能,亦可利用電腦RS232通訊介面傳遞資料,經由無線傳輸模組之封包傳輸,達到即時顯示影像之效果。