螺母規格表的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

螺母規格表的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(美)戈登·麥庫姆寫的 小型智能機器人製作全攻略(第5版) 和蘇會人等的 中文版AutoCAD2019機械製圖從入門到精通都 可以從中找到所需的評價。

另外網站k02-螺絲規格與定義也說明:A. Machine Screw:機械螺絲(使用於螺母) ... 四、常見螺絲規格與標示: ... 不只英制螺紋與公制螺紋外徑與牙距不同,連螺絲頭六角帽螺帽規格尺寸多有一點差異,所以連 ...

這兩本書分別來自人民郵電出版社 和化學工業出版社所出版 。

高苑科技大學 電機工程研究所 劉又齊、吳上立所指導 王明翰的 機械手臂應用於外牙輾牙機自動化製程之實現 (2020),提出螺母規格表關鍵因素是什麼,來自於機器手臂、系統整合、工業自動化。

而第二篇論文中原大學 機械工程研究所 李有璋所指導 呂紹弘的 開發雷射直寫技術設備及其應用 (2020),提出因為有 雷射直寫技術的重點而找出了 螺母規格表的解答。

最後網站螺帽尺寸則補充:螺帽 六角螺帽袋帽蝶型螺帽材質: 鐵不銹鋼(SUS 304) 中碳鋼合金鋼銅電鍍處理: 鍍鋅染黑鍍鎳五彩熱浸鋅尺寸: 規格表折數歡迎來電洽詢各類材質特殊規格品訂作材質: 鐵 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了螺母規格表,大家也想知道這些:

小型智能機器人製作全攻略(第5版)

為了解決螺母規格表的問題,作者(美)戈登·麥庫姆 這樣論述:

小型智能機器人製作全攻略 是小型智能機器人製作的資料寶典,通過實例講解,告訴你製作機器人需要掌握的綜合知識,內容翔實,通俗易懂。初學者可以邊玩邊學,瞭解小型智能機器人設計、製作和使用的技巧。有一定製作經驗的愛好者也可以從本書中“淘”到不少好點子。   本書已經是第5版了,在前4版的基礎上做了大量更新了,增加了新的電機、感測器和模組的專案應用實例。這本書意在啟發你使用不同的元件來構建機器人,你可以按自己喜歡的方式把書裡介紹的模組化的專案加以組合,創建出各種形狀和尺寸、高度智能化的機器人。 Gordon McComb的作品涵蓋業餘愛好者和機器人教育領域,有著30年的寫作經驗,被M

AKE雜誌稱為“業餘機器人之父”。他是《小型智能機器人製作全攻略》一書前4個版本的作者,該書在業餘機器人愛好者中廣受好評。被翻譯為多種語言。 譯者   臧海波 網名“digi01”,國內創客,也是《無線電》雜誌作者。在網路上有一定知名度和號召力,被愛好者稱為“機器人DIY界的元老”。在《無線電》雜誌上連載機器人製作、音訊DIY等門類的文章,並參與翻譯《愛上製作》系列圖書。 前言 致謝 簡介 第一部分 — 機器人建造中的科學與藝術 第一章 — 成為機器人建造大師 為什麼要建造機器人? 簡單到超乎你的想像 需要掌握的技術 自製、套件,或者成品? 第二章 — 機器人的構造 固定與

移動式機器人 自動與遙控式機器人 人工與自主機器人 那麼,機器人到底是什麼? 機器人的身體 運動機構 動力系統 感測器 輸出設備 第三章 — 建造機器人的安全須知 專案安全 焊接安全 防火安全 電池安全 防止靜電損害 用電安全 急救措施 P9 第二部分 建造機器人 第四章 準備材料 本地或線上電子經銷商 專業網上機器人零售商 工藝用品商店 手工製作商店 五金和裝修材料商店 有計劃的一次性採購 其他有價值的零售商 回收:利用現有資源 做事情有條理 第五章— 機器人建造入門 選擇合適的建造材料 建造機器人所需的基本工具 五金用品 機械加工技術 第六章 — 用生活材料製作機器人 用輕型材料快速搭建

機器人 底板的切割與鑽孔 用熱熔膠把材料組合到一起 使用臨時緊固件快速成型 把玩具改造成高科技機器人 用搜羅到的材料建造機器人 第七章 — 木制機器人 使用硬木還是軟木 實木板還是膠合板 木材切割技巧 現學現做——打造一個帶動力的木制平臺 第八章 — 塑制機器人 適用于機器人的塑膠種類 製作機器人的首選塑膠 塑膠的購買方式 硬性發泡PVC的優點 確定板材厚度 怎麼切割塑膠 怎麼給塑膠鑽孔 P10 製作塑膠底盤 製作塑膠框架 塑膠的彎曲定型 塑膠邊緣的打磨 怎麼粘合塑膠 怎麼給塑膠上色 打造一個帶動力的塑制平臺 第九章 — 金屬制機器人 適合用來製作機器人的金屬 測量金屬厚度 什麼是熱處理 怎麼

購買適用于機器人的金屬材料 適用于機器人的可回收金屬材料 金屬加工技術 建造CrossBot——一個“免切割”金屬平臺 第十章 — 用數位技術建造機器人 設計切割鑽孔佈局 使用CNC雕刻機 使用鐳射切割機 使用3D印表機 第十一章 — 組裝技術 螺絲、螺母和其他緊固件 各種支架 粘合劑的選擇和使用 第三部分 讓你的機器人動起來 第十二章 — 電池和電源 常見電源概覽 適用于機器人的電池 瞭解電池規格 可充電電池 機器人電池概覽 常見電池尺寸 提升電池容量 電源和電池的電路符號 使用和電池配套的電池盒 P11 使用可充電電池組 電池安裝技巧 電池與機器人的連接 注意電池極性 增加熔絲保護 穩壓

電源 處理電力不足的問題 網上內容:附加資訊 第十三章 — 讓你的機器人動起來 選擇一種行走機構 輪式行走機構 履帶式行走機構 腿式行走機構 其他運動方式 網上資源:限制機器人的重量 選擇正確的電動機 電動機參數 測量電機電流 解決電壓跌落問題 第十四章 — 使用直流電動機 直流電動機工作原理 瞭解直流電動機的規格 控制直流電動機 用開關控制電機 用繼電器控制電機 用電晶體控制電機 用MOSFET功率管控制電機 用橋模組控制電機 控制直流電動機的轉速 抑制電磁雜訊 為機器人選擇電動機 第十五章 — 使用舵機 R/C舵機的工作原理 R/C舵機的控制信號 內部電位器的作用 特殊用途的舵機類型和尺寸

齒輪機構和輸出力度 P12 輸出軸的軸襯和軸承 連接器種類及配線 類比舵機與數位舵機 舵機控制電路 使用可連續旋轉的舵機 用舵機控制感測器雲台 用舵機控制腿關節、手臂和手指 第十六章 — 安裝電動機和車輪 安裝直流電動機 安裝R/C舵機 在軸上安裝動力傳動系統 車輪與直流齒輪減速電機的安裝 車輪與R/C舵機的安裝 安裝舵機聯動機構 適用于機器人的傳動零件 使用剛性和柔性軸連接器 電動機輸出軸的形制 第四部分 製作你的第 一個機器人 第十七章 — 搭建輪式機器人 輪式驅動機器人的設計原則 雙電動機BasicBot 附加項目:雙層結構的RoverBot 搭建4WD機器人 兩個快速成型的輪式平臺

第十八章 — 搭建履帶式機器人 履帶式機器人的科技魅力 第十九章 — 搭建步行式機器人 步行式機器人概覽 選擇最佳結構材料 從零開始還是使用套件 腿部動力 步行機器人的步態分析 搭建3個舵機的昆蟲機器人 P13 第二十章 — 搭建機器臂和夾持器 人類手臂的構造 機器臂上的自由度 機器臂的類型 驅動技術 搭建一個3自由度的腕關節 用套件搭建機器臂 用夾持器構成機器爪 第五部分 機器人電子學 第二十一章 — 機器人電子學入門 電子製作必備工具 電路製作基礎入門 熟悉導線與配線方法 焊接技巧 第二十二章 — 機器人常用電子元件 首先要認識電子元件的符號 固定電阻 電位器 電容 二極體 發光二極體

(LED) 電晶體 積體電路 開關 繼電器 其他元件 網上內容:元件採購 第二十三章 — 製作電路 使用免焊電路實驗板 用免焊電路實驗板搭建電路的步驟 製作永久性免焊電路 給機器人安裝免焊電路實驗板 使用好免焊電路實驗板的竅門 製作電路板 P14 使用原型開發板 給電路板配上插針 最佳連接方式 第六部分 機器人的大腦 第二十四章 — 機器人的智慧 基本大腦 從簡單開始! 分立元件構成的大腦 輸入和輸出 認識單片機 單片機的形狀和規格 單片機的內部結構 單片機的速度 網上內容:程式設計入門 第二十五章 — 使用Arduino Arduino的結構 用擴展板擴展介面 版本分類 USB連接與電源

Arduino的引腳 給Arduino程式設計 給機器人程式設計 使用舵機 創建自訂函數 控制兩個舵機 流控結構 使用串口監視器 一些常用的機器人函數 第二十六章 — 使用BBC Micro:bit 認識BBC Micro:bit 選擇程式設計語言 Micro:bit的擴展包 給Micro:bit上傳程式 實用的機器人功能 P15 第二十七章 — 使用樹莓派 樹莓派的內部結構 樹莓派電路板的規格 樹莓派的供電 選擇作業系統 登錄樹莓派 硬體擴展 認識GPIO引腳 程式設計選項 一些常用的機器人功能 樹莓派的高級功能 第二十八章 — 其他適用于機器人的單片機 使用PICAXE 使用Paralla

x BASIC Stamp 使用Parallax Propeller 第二十九章 — 單片機的硬體介面 感測器輸入 電動機和其他執行器 數位輸出介面 數位I/O介面 類比輸入介面 使用模數轉換 使用數模轉換 多信號輸入輸出結構 USB連接 網上內容:擴展I/O介面 遵循科學設計原則 第七部分 機器人感測器 第三十章 — 觸感 什麼是觸感 機械開關 使用按鈕消抖電路 開關的軟體消抖 給碰撞開關程式設計 機械式壓力感測器 P16 用麥克風製作觸覺感測器 其他種類的“觸覺”感測器 網上內容:壓電陶瓷式感測器 第三十一章 — 接近與測距 設計概述 簡單紅外接近感測器 調製型紅外接近探測器 紅外測距

網上內容:使用被動式紅外感測器 超聲波測距 使用鐳射測距儀 擴展感測器視野範圍 第三十二章 — 導航 跟隨預定路線:尋線 沿著牆壁行駛 測距:計算機器人的行駛距離 認識加速度、旋轉與方向 羅盤定位 使用傾斜和重力感測器 更多適用于機器人的導航系統 第三十三章 — 環境感知 監聽聲音 適用於機器眼的簡易光電感測器 視覺系統簡介 煙霧探測 檢測危險氣體 熱量感知 第八部分 與你的機器人互動 第三十四章 — 機器人的遙控操作 用紅外線遙控機器人 用Zigbee無線模組控制機器人 藍牙遙控 圖像傳輸 P17 第三十五章 — 聲響效果 預程式設計聲音模組 商業化音效套件 輸出警報或其他警告音 用單片機

輸出聲音和音樂 使用音訊放大器 用單片機播放聲音和音樂 語言合成技術:讓你的機器人開口說話 第三十六章 — 機器人的視覺效果 用LED顯示回饋資訊 使用LCD顯示幕 用光線效果實現人機互動 最後,放手去做! 第九部分 線上機器人專案 第三十七章 — 製作尋光機器人 設計目標 LightBot底盤 可供使用的單片機 第三十八章 — 把R/C玩具改造成機器人 設計目標 R/CBot底盤 可供使用的單片機 第三十九章 — 製作尋線機器人 設計目標 LineBot底盤 可供使用的單片機 第四十章 — 製作機器臂 設計目標 BallBot平臺 可供使用的單片機 附錄RBB技術支援網站

機械手臂應用於外牙輾牙機自動化製程之實現

為了解決螺母規格表的問題,作者王明翰 這樣論述:

為了提高生產效率,工業製程中各項控制參數的蒐集將是很重要的一項工作。隨著傳統製程控制與設備自動化的快速發展,生產線上的產能已可自動化管理進行資料收集與同步。因此,應用機電整合系統可以即時節省傳統製程上之生產線人數,進而由機械取代人力與廠之間的分工配合,透過資料的整合、分析,達到統一管理的目的。本論文將以一機械手臂輾牙機為案例,完成自動機械手本體教點與控制系統之流程設計。機械手控制系統採用DRAStudio 軟體為主,控制器連接後,提供使用者進行專案管理、JOG 操作、教導點位、編輯機器語言、 設定 I/O 等功能,以供工程師設置生產編制、編輯速度條件、製程自動化並能即時掌握輾牙機的製程狀況。

人機介面除了方便操作外,亦與可機械手教導器的控制模式做切換,並將輾牙機本台控制與PLC連結,可由終端機程式將資料擷取後發送至機械手臂系統進行整合。本論文除了將製程自動化與數據記錄外,期望能藉由資料的整合、分析,進而調整製程的控制參數,讓製程達到更好的效率。本研究完成整個系統之建立,經由多次實驗和驗證,機器手臂可以藉由機械手臂教導點位準確地夾取在萃盤上擺放之工件,並整齊地將料件放在指定之輸送帶位置。

中文版AutoCAD2019機械製圖從入門到精通

為了解決螺母規格表的問題,作者蘇會人等 這樣論述:

本書是中文版AutoCAD2019機械製圖從入門到提高的完全自學教程,通過一個個典型的繪圖案例,由淺入深、從易到難,對每章的知識點結合實際操作案例詳細講解,幫助讀者加深理解並扎實掌握AutoCAD機械標準圖樣的繪製方法和技巧,專業性和實用性強。全書將AutoCAD繪圖知識和機械製圖國家標準緊密結合,所有案例均是符號國家標準圖樣要求的CAD圖例,並附贈標準CAD圖檔和圖庫;配有完整的教學視頻檔,手機掃碼即可學習。 全書共21章,主要內容包括機械製圖基礎、AutoCAD介面介紹、繪圖輔助工具的使用、創建和編輯二維機械圖形、使用AutoCAD在機械圖中添加文字和尺寸標注、Aut

oCAD三維模型的創建與修改,後以減速器作為綜合案例進行設計講解。 本書適合於從事機械設計、機械工程、CAD繪圖的工程技術人員學習和參考,也可供高等院校、聯業院校機械專業師生進行CAD製圖參考。

開發雷射直寫技術設備及其應用

為了解決螺母規格表的問題,作者呂紹弘 這樣論述:

本論文以自行設計開發的光固化3D列印機台為主要製程設備,在三軸列印的架設以5相步進馬達搭配滾珠螺桿連接X、Y軸形成移動平台,並加上線性馬達連接升降載台完成Z軸架設。在程式控制上,以GRBL作為三軸控制軟體,搭配Arduino MEGA2560單晶片微處理器輸出訊號給各軸馬達驅動器以及雷射光源模組來控制三軸移動和固化樹酯所需的雷射功率大小,並由人機介面即時監控機台目前狀況。接著依據實際打印結果調整列印參數和硬體設定,逐步改善列印品質,包含選用的馬達、馬達驅動器、模型切片軟體,使其成為最小列印線寬2 m的3D列印機台。接著使用該機台列印菲涅耳波帶片模板,列印出內圈半徑161 m,外圈半徑10

07 m的20環同心圓,經過PDMS複製模板結果,再以樹酯為材料翻模至蓋玻片上,完成波帶片製作。在製程方法克服列印載台與樹酯槽底並非完全平行,導致列印結構厚度不均的問題;最後探討波帶片的光學聚焦效果,藉由改變列印底板形式,從間隔10 m的柵狀底板改為間隔5 m的圓形底板,其聚焦能量因此提升了53%,接著比較不同層高之間的波帶片對理論聚焦距離的影響。從實驗結果得知,製作出越薄的波帶片越能接近理論值,但需考量製作的材料是否會因厚度降低變得透光,而失去原先預期的光學效果,最後依據實驗結果表示,層高4 m的波帶片能夠獲得最佳效果。