Shear rate的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

Shear rate的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Pecherski, Ryszard B.寫的 Viscoplastic Flow in Metallic Solids Produced by Shear Banding 和蕭華,蒲金標的 航空氣象學【2022年版】都 可以從中找到所需的評價。

另外網站Estimation of agitator flow shear rate - Wu - American Institute ...也說明:It should be noted that, although the shear rate is defined loosely as an averaged velocity gradient in the impeller region, it is a common ...

這兩本書分別來自 和秀威資訊所出版 。

明志科技大學 化學工程系碩士班 楊純誠、施正元所指導 林冠吟的 添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料 (2021),提出Shear rate關鍵因素是什麼,來自於磷酸鋰鐵、溶膠凝膠法、多孔氧化石墨烯、氣相生長碳纖維、鋰離子擴散係數、電子導電度、原位X-ray繞射光譜儀、原位顯微拉曼光譜儀。

而第二篇論文國立臺灣科技大學 化學工程系 朱義旭、翁玉鑽所指導 葉羅納的 膠凝時間對可能用作柴油吸收劑藻酸鹽氣凝膠吸收率的影響 (2021),提出因為有 海藻酸鈣、膠凝時間、柴油、吸收能力、可重複使用性、疏水性氣凝膠的重點而找出了 Shear rate的解答。

最後網站Effects of different shear rates on the attachment and ...則補充:The effect of different shear rates, particularly pathological forces, on platelet thrombus formation remains to be fully elucidated. The ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Shear rate,大家也想知道這些:

Viscoplastic Flow in Metallic Solids Produced by Shear Banding

為了解決Shear rate的問題,作者Pecherski, Ryszard B. 這樣論述:

VISCOPLASTIC FLOW IN SOLIDS PRODUCED BYSHEAR BANDINGA complete overview of the topic of viscoplastic flow in solids produced by shear bandingThis book presents novel ideas about inelastic deformation and failure of solids in a clear, concise manner. It exposes readers to information that will all

ow them to acquire the competence and ability to deal with up-to-date manufacturing and failure processes. It also portrays a new understanding of deformation processes. Finally, shear banding’s typical mechanism becomes the active cause of viscoplastic flow and not the -passive effect. Viscoplastic

Flow in Solids Produced by Shear Banding begins by discussing the new physical model of multilevel hierarchy and the evolution of micro-shear bands. In conclusion, it examines the difficulties of applying a direct multiscale integration scheme and extends the representative volume element (RVE) con

cept using the general theory of the singular surfaces of the microscopic velocity field sweeping out the RVE. This book reveals a new formulation of the shear strain rate generated by the consecutive systems of shear bands in the workflow integration approach. This book: Presents fresh ideas about

inelastic deformation and failure of materialsProvides readers with the ability to deal with up-to-date manufacturing and failure processesSheds light on the interdisciplinary view of deformation processes in solidsViscoplastic Flow in Solids Produced by Shear Banding will appeal to researchers stud

ying physical foundations of inelastic behaviour and failure of solid materials, dealing with analysis and numerical simulations of manufacturing forming processes. It is also an excellent resource for graduate and postgraduate students of material science and mechanical engineering faculties.

添加不同導電碳材應用於磷酸鋰鐵/碳陰極複合材料

為了解決Shear rate的問題,作者林冠吟 這樣論述:

目錄明志科技大學碩士學位論文口試委員審定書 i誌謝 ii摘要 iiiAbstract v目錄 viii圖目錄 xi表目錄 xvii第一章 緒論 11.1 前言 11.2 研究動機 2第二章 文獻回顧 42.1 鋰離子二次電池之發展 42.1.1鋰離子二次電池反應機制及熱失控 52.2 陰極材料(Cathode materials) 82.3 陽極材料(Anode) 102.4 隔離膜(Separator) 122.5 電解質(Electrolyte) 142.6 磷酸鋰鐵(LiFePO4)的基本特性 162.7 磷酸鋰鐵陰極材料改質方法 182.7.

1 碳層包覆 182.7.2 添加導電/包覆導電的碳材 212.7.3 縮小粒徑 242.8 磷酸鋰鐵材料之合成方法 262.8.1 微波法(Microwave method) 262.8.2 溶膠凝膠法(Sol-gel method) 282.8.3 水熱法(Hydrothermal method) 312.8.4 噴霧乾燥法(Spray-drying method) 35第三章 實驗方法 393.1 實驗藥品與儀器 393.1.1 實驗儀器與設備 403.2 LFP/C複合陰極材料之製備方法 413.2.1磷酸鋰鐵/碳(LFP/C)製備方法 413.2.2磷酸鋰鐵

/碳/多孔氧化石墨烯(LFP/C/PGO)製備方法 423.2.3磷酸鋰鐵/碳/氣相生長碳纖維(LFP/C/VGCF)製備方法 443.3 LFP/C之陰極複合材料之物性、化性分析 463.3.1磷酸鋰鐵/碳(LFP/C)陰極材料之物化性分析方法 473.3.2磷酸鋰鐵/碳(LFP/C)陰極材料之化學成份分析 563.4 磷酸鋰鐵/碳(LFP/C)陰極材料之電化學性質分析 573.4.1電極片製備 573.4.2鈕扣型鋰離子半電池封裝 593.4.3電池充/放電穩定度測試 603.4.4循環伏安法測試 613.4.5交流阻抗測試 623.4.6恆電流間歇滴定法測試 64

第四章 結果與討論 654.1 磷酸鋰鐵/碳(LFP/C)之材料晶相結構分析 654.1.1原位-晶相結構分析 674.2 磷酸鋰鐵/碳(LiFePO4/C)之表面形態分析 724.2.1 磷酸鋰鐵/碳(LFP/C)之材料化學組成元素分析 764.2.2 磷酸鋰鐵/碳(LFP/C)之顯微結構微分析 794.3 磷酸鋰鐵/碳(LFP/C)之碳層結構分析 844.3.1原位-顯微拉曼光譜分析 864.4 磷酸鋰鐵/碳(LFP/C)之比表面積分析(BET) 884.5磷酸鋰鐵/碳(LFP/C)之粉末電子導電度分析 914.6 磷酸鋰鐵/碳(LFP/C)之殘碳量分析 924.7

磷酸鋰鐵/碳(LFP/C)電化學分析法 934.7.1 磷酸鋰鐵/碳(LFP/C)之低電流速率之充放電分析 934.7.2 磷酸鋰鐵/碳(LFP/C)之高電流速率之充放電分析 994.7.3 磷酸鋰鐵/碳(LFP/C)之長期循換穩定性分析 1044.8 磷酸鋰鐵/碳(LFP /C)循環伏安分析 1184.8.1磷酸鋰鐵/碳(LFP/C)電化學微分曲線分析 1204.9 磷酸鋰鐵/碳(LFP/C)交流阻抗及鋰離子擴散係數分析 1244.9.1磷酸鋰鐵/碳(LFP/C)恆電流間歇滴定法測試 129第五章 結論 135參考文獻 137 圖目錄圖 1、鋰離子二次電池充放電原理示意圖

[12]。 5圖 2、1992年至2020年鋰離子電池的世界市場價值[15]。 6圖 3、鋰離子二次電池熱失控三個階段示意圖[19]。 7圖 4、陰極材料中主要分為三種不同的晶體結構[28]。 9圖 5、鋰離子電池之陽極材料分類圖。 10圖 6、鋰離子電池之陽極材料特性。 11圖 7、各種製造隔離膜的方法示意圖[39]。 12圖 8、磷酸鋰鐵(LiFePO4)與磷酸鐵(FePO4)晶格結構圖[53]。 17圖 9、LiFePO4和LiFePO4/C複合材料的SEM圖。 18圖 10、LiFePO4和LiFePO4/C複合材料的SEM圖。 19圖 11、未塗覆TWEEN 80

的LiFePO4 (a). SEM圖 (b). TEM和HRTEM圖;塗覆了TWEEN 80的LiFePO4 (c). TEM和 (d). HRTEM圖。 20圖 12、LFP–CNT–G組合的網絡結構示意圖[58]。 21圖 13、SEM圖 (a). 原始LFP (b). LFP-CNT複合材料 (c). LFP-G複合材料 (d). LFP-CNT-G複合材料;TEM圖 (e). 原始LFP (f). LFP–CNT複合材料 (g). LFP–G複合材料 (h). LFP–CNT–G複合材料。 22圖 14、(a) VC/LFP及C/LFP的放電曲線圖、(b) VC/LFP及C/LF

P循環比較圖。 22圖 15、VC/LFP和C/LFP的EIS阻抗曲線比較圖。 23圖 16、$VGCF的製造過程示意圖[60]。 23圖 17、LFP/C和LFP/C-Tween分析(a). XRD圖譜,(b). 粒徑分佈,(c).和(d). SEM圖,(e)和(f). TEM圖。 25圖 18、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10C不同電流速率下的充電/放電曲線。 27圖 19、(A). LiFePO4/graphene,(B). LiFePO4/C複合材料在0.1至10 C的各種電流速率下的充電/放電循環性能圖。 27

圖 20、SEM圖(a). HY-LiFePO4 (b). HY-SO-LiFePO4。 29圖 21、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG樣品的SEM和TEM圖。 30圖 22、(a)、(b) LiFePO4/C和(c)、(d) LiFePO4/CG複合材料在不同速率下的充電/放電曲線和循環性能。 30圖 23、LiFePO4/C核-殼複合材料(a). XRD圖, (b). SEM圖, (c). TEM圖, (d). HRTEM圖。 32圖 24、SEM圖(a). 3DG, (b). FP, (c)、(d). FP/3DG, (e). LFP/C,

(f). LFP/3DG /C。 33圖 25、LFP/C和LFP/3DG/C,(a). 0.2C、(b). 1C時的循環性能曲線和庫侖效率。 34圖 26、LFPO/rGO複合材料(a)~(c). SEM圖像,(d)~(f). TEM圖像。 34圖 27、SEM圖(a). Hy-LFP/C (b). Hy-LFP/GO/C (c). SP-LFP/GO/C和(d). SP-LFP/PGO/C。 36圖 28、(a). Hy-LFP/C, (b). SP-LFP/GO/C, (c). SP-LFP/PGO/C複合材料在0.2~10C時的充放電曲線, (d). LFP複合材料的速率能力曲

線圖。 36圖 29、具有不同NC層含量的LiFePO4的SEM圖(a).0 wt. %NC (b).2 wt. %NC (c).5 wt. %NC (d).10 wt. %NC。 37圖 30、HRTEM圖(a).LFP/C, (b).LFP/C/CNT, (c).LFP/C/G, (d).LFP/C/G/CNT。 38圖 31、LiFePO4/C陰極材料之流程示意圖。 45圖 32、LiFePO4/C陰極複合材料的各性質檢測項目之流程圖。 46圖 33、布拉格表面衍射示意圖。 47圖 34、X-ray繞射分析儀(Bruker D2 Phaser)。 48圖 35、原位繞射分析

光譜儀組件。 49圖 36、掃描式電子顯微鏡(Hitachi S-2600H)圖。 50圖 37、高解析穿透式電子顯微鏡(JEOL JEM2100)。 51圖 38、顯微拉曼光譜儀(Confocal micro-Renishaw)。 52圖 39、原位顯為拉曼分析光譜儀組件。 53圖 40、比表面積分析儀。 54圖 41、將錠片夾入自製夾具之示意圖。 55圖 42、元素分析儀(Thermo Flash 2000)。 56圖 43、LiFePO4/C複合陰極材料電極片製備之流程圖。 58圖 44、CR2032鈕扣型半電池封裝示意圖。 59圖 45、佳優(BAT-750B)電池

測試儀。 60圖 46、恆電位電池測試儀(MetrohmAutolab PGST AT302N)圖。 61圖 47、AC交流阻抗測試圖譜(Nyquist plot)示意圖。 62圖 48、BioLogic BCS-805電池測試儀。 64圖 49、添加不同導電碳材之陰極複合材料XRD分析圖譜。 66圖 50、(a) LFP/C、(b) LFP/C/VGCF電極在充放電1次循環下的In-situ XRD分析圖。 69圖 51、LFP/C電極在不同範圍之In-situ XRD分析圖。 70圖 52、LFP/C/VGCF電極在不同範圍之In-situ XRD分析圖。 70圖 53、在

In-situ XRD充放電過程中LFP相的比例圖。 71圖 54、PGO之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 55、VGCF之SEM表面形貌圖: (a). 1kx (b). 5kx (c). 10 kx (d) 20 kx。 73圖 56、LFP/C之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 57、LFP/C/PGO之SEM表面形貌圖: (a).、(b). 在5kx、(c).、(d). 在10kx。 74圖 58、LFP/C/VGCF之SEM表面形貌圖: (a)

.、(b). 在5kx、(c).、(d). 在10kx。 75圖 59、LFP/C樣品EDS元素mapping分析圖。 76圖 60、LFP/C樣品EDS元素分析光譜圖。 76圖 61、LFP/C/PGO樣品EDS元素mapping分析圖。 77圖 62、LFP/C/PGO樣品EDS元素分析光譜圖。 77圖 63、LFP/C/VGCF樣品EDS元素mapping分析圖。 78圖 64、LFP/C/VGCF樣品EDS元素分析光譜圖。 78圖 65、自製PGO添加劑在HR-TEM之分析圖。 80圖 66、市售VGCF添加劑在HR-TEM之分析圖。 80圖 67、LFP/C粉體在H

R-TEM之分析圖。 81圖 68、LFP/C/PGO粉體在HR-TEM之分析圖。 82圖 69、LFP/C/VGCF粉體在HR-TEM之分析圖。 83圖 70、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果圖。 85圖 71、LFP/C在不同範圍之In-situ micro-Raman分析圖。 87圖 72、LFP/C/VGCF在不同範圍之In-situ micro-Raman分析圖。 87圖 73、LFP/C材料之BET比表面積分析圖。 89圖 74、LFP/C/PGO材料之BET比表面積分析圖。 89圖 75、LFP/C/VGCF材料之BET比表面積分析圖。 9

0圖 76、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量曲線圖。 94圖 77、LFP/C在0.1C/0.1C充放電速率活化階段電性曲線圖。 95圖 78、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性曲線圖。 96圖 79、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段階段電性曲線圖。 97圖 80、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化曲線圖。 98圖 81、LFP/C在0.2C/0.2C-10C充放電速率電性曲線圖。 100圖 82、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性曲線圖

。 101圖 83、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性曲線圖。 102圖 84、添加不同導電碳材在0.2C/0.2-10C速率電性曲線圖。 103圖 85、LFP/C在0.1C/0.1C充放電速率30 cycles電性曲線圖。 106圖 86、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性曲線圖。 107圖 87、LFP/C/VGCF在0.1C/0.1C充放電速率30 cycles電性曲線圖。 108圖 88、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性曲線圖。 109圖 89、LFP/C在1

C/1C充放電速率100 cycles之電性曲線圖。 110圖 90、LFP/C/PGO在1C/1C充放電速率100 cycles之電性曲線圖。 111圖 91、LFP/C/VGCF在1C/1C充放電速率下100 cycles之電性曲線圖。 112圖 92、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性曲線圖。 113圖 93、LFP/C在1C/10C充放電速率下100 cycles之電性曲線圖。 114圖 94、LFP/C/PGO在1C/10C充放電速率下100 cycles之電性曲線圖。 115圖 95、LFP/C/VGCF在1C/10C充放電速率下

100 cycles之電性曲線圖。 116圖 96、添加不同導電碳材在1C/10C充放電速率100 cycles之電性曲線圖。 117圖 97、LFP/C添加不同導電碳材之CV分析圖。 119圖 98、LFP/C樣品之電化學微分曲線分析。 121圖 99、LFP/C/VGCF樣品之電化學微分曲線分析。 122圖 100、LFP/C樣品添加不同導電碳材之電化學微分曲線分析。 123圖 101、等效電路圖模組圖[112]。 125圖 102、在0.1C/0.1C充放5次循環後,不同導電碳材製備LFP/C樣品:(a). EIS阻抗比較圖、(b).鋰離子擴散係數比較圖。 126圖 10

3、在0.1C/0.1C充放30次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 127圖 104、在1C/1C充放100次循環後,不同導電碳材製備LFP/C樣品(a). EIS阻抗比較圖、(b). 鋰離子擴散係數比較圖。 128圖 105、LFP/C單次步驟充放電曲線圖(a) charge;(b) discharge。 132圖 106、LFP/C之V vs.τ1/2分析圖。 132圖 107、LFP/C之GITT充放電曲線圖。 133圖 108、LFP/C/VGCF之GITT充放電曲線圖。 133圖 109、GITT單次步驟比

較(a) charge、(b) discharge。 134圖 110、GITT之充電分析圖。 134 表目錄表 1、鋰離子電池之陰極材料的特性比較分析表 9表 2、鋰離子電池常用有機溶劑之特性比較 15表 3、LiFePO4與FePO4之晶格參數 17表 4、實驗藥品 39表 5、實驗儀器與設備 40表 6、充放電條件計算表 60表 7、方程式中符號及單位 63表 8、添加不同導電碳材之陰極複合材料XRD晶相比較表 66表 9、添加不同導電碳材之LFP/C陰極複合材料之拉曼分析結果 85表 10、LFP/C、LFP/C/PGO、LFP/C/VGCF之比表面積分析結果

88表 11、LFP/C、LFP/C/PGO、LFP/C/VGCF之粉體電子導電度結果分析 91表 12、添加不同導電碳材之陰極複合材料之殘碳含量分析 92表 13、LFP/C含不同導電碳材,在0.1C/0.1C充放電速率下,首次充放電克電容量比較 94表 14、LFP/C在0.1C/0.1C充放電速率活化階段電性比較 95表 15、LFP/C/PGO在0.1C/0.1C充放電速率活化階段電性比較 96表 16、LFP/C/VGCF在0.1C/0.1C充放電速率活化階段電性比較 97表 17、LFP/C添加不同導電碳材在0.1C/0.1C速率下活化比較 98表 18、LFP/C在

0.2C/0.2C-10C充放電速率電性比較 100表 19、LFP/C/PGO在0.2C/0.2C-10C充放電速率電性比較 101表 20、LFP/C/VGCF在0.2C/0.2C-10C充放電速率電性比較 102表 21、添加不同導電碳材在0.2C/0.2-10C速率電性比較表 103表 22、LFP/C/PGO在0.1C/0.1C充放電速率下30 cycles電性比較表 107表 23、LFP/C/VGCF在0.1C/0.1C充放電速率下30 cycles電性比較表 108表 24、LFP/C添加不同導電碳材在0.1C/0.1C充放電速率30 cycles電性比較表 10

9表 25、LFP/C添加不同導電碳材在1C/1C充放電速率100 cycles之電性比較表 113表 26、添加不同導電碳材在1C/10C充放電速率100 cycles之電性比較表 117表 27、LFP/C添加不同導電碳材之CV分析結果 119表 28、LFP/C樣品之電化學微分曲線分析表 121表 29、LFP/C/VGCF樣品之電化學微分曲線分析表 122表 30、LFP/C樣品添加不同導電碳材之電化學微分曲線分析 123表 31、在0.1C/0.1C充放5次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 126表 32、在0.1C/0.

1C充放30次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 127表 33、在1C/1C充放100次循環後,添加不同導電碳材製備LFP/C樣品之EIS分析及鋰離子擴散係數計算結果表 128表 34、鋰離子的擴散係數方程式中符號及單位 130

航空氣象學【2022年版】

為了解決Shear rate的問題,作者蕭華,蒲金標 這樣論述:

  航空氣象學屬於應用氣象學之範疇,其主要任務在於保障飛航安全,提高飛航效率。   在實務上著重於利用適當的天氣條件,避開惡劣的天氣,使飛機順利完成飛行任務。   本書編修者蒲金標 博士為航空氣象學權威,在民航局實際從事航空氣象工作三十六年,參與民用航空局航空氣象現代化系統計畫,先後架設松山和台灣桃園國際機場低空風切警告系統,並建置航空氣象服務網站。2008年在民航局飛航服務總台副總台長退休後,繼續從事研究以氣壓跳動與機場低空亂流之相關性,並於2017年8月在松山機場架設一套松山機場低空亂流警告系統,對台灣飛航有許多重要貢獻。   本書所有各種天氣報告及天氣預報之內容次

序及傳播程序等,均依照世界氣象組織(WMO)國際航空氣象服務(Meteorological Service for International Air Navigation. WMO Technical Regulations Vol.Ⅱ)以及國際民航組織(ICAO)國際民航公約第三號附約(ANNEX 3 to the convention on international civil aviation)之各項共同準則,符合目前航空氣象服務之國際規定。   本書計分三篇,各篇均自成系統,可獨立參考閱讀。第一篇論述飛航氣象基本要素,含物理學之理論研究以及各要素之應用於航空方面;第二篇討論影響飛

航安全之天氣,詳細討論可能危害飛航之情況及應付迴避之方法。第三篇敘述航空氣象服務,略述航空氣象機構、業務及工作技術內容等。適用於「航空氣象學」課程,也可當作高考、民航、升職等考試、軍官轉任民航特考與學科項目入門用書。 本書特色   ✓航空氣象學權威、前民航局飛航服務總台副總台長蕭華&蒲金標專業撰寫,最新編修!   ✓完整收錄航空氣象學之基本理論及各項公式,課程/考試必備用書!   ✓全面介紹航空科學、天氣觀測、飛航安全、航空氣象服務,掌握上榜關鍵!   ✓全台各地航空氣象機構之工作技術內容詳實說明,理論與應用並重!   ✓附天氣報告電碼&天氣預報電碼,編碼、填圖、天氣分析一次到位!  

膠凝時間對可能用作柴油吸收劑藻酸鹽氣凝膠吸收率的影響

為了解決Shear rate的問題,作者葉羅納 這樣論述:

漏油是海洋生態系統及其周邊的嚴重問題之一,已有一些技術可緩解這一問題,其中之一就是吸收。本研究探討使用自然可得的生物質,即海藻酸鈉,作為吸收劑合成的前體。雖然海藻酸鹽吸收劑合成和改性的各種方法已被廣泛研究,但關於凝膠時間對其性質和吸收率的影響所知甚少。本研究使用 1 w/v % 海藻酸鈉與 1 wt% CaCl 交聯 0、3、6 和 12 小時所得之海藻酸鹽氣凝膠(AA)分別稱為 AA-0、AA-3、AA-6、AA-12。凝膠時間對 AA 物理化學性質的影響藉由電感耦合等離子體發射光譜儀 (ICP-OES) 分析、使用壓汞孔隙率計 (MIP) 量測總孔體積和使用萬能測試機(UTM)評估其抗壓

強度;結果顯示凝膠時間越長,表觀密度和鈣含量增加,從而增加了 AA 氣凝膠的最大應力。本研究使用柴油為模型吸收物。在合成的 AA 中,AA-3 具有最高的吸收能力(Q=11.20 g/g)、可重複使用性(最多 29 次循環)和再吸收能力(Q= 4.09 g/g)。通過添加單寧酸和十二烷硫醇進行表面改性,將親水性 AA-3 轉化為更疏水的 AA-3Do。傅里葉變換紅外 (FTIR) 數據證實了在 AA-3Do 中成功地加入了添加劑。 AA-3Do 顯示能極快速吸收柴油,初始速率 ((R_0) 為 1.12E+09 g/g.s,但緩慢地吸收水 (R_0 = 27.6526 g/g.s),在其動力學

數據中觀察到 2 吸收平衡。擬二級動力學和兩步線性驅動力 (LDF) 模型分別可最佳地描述柴油和水的吸收。本研究還探討了可重複使用性,並證明了 AA-3Do 偏好吸收柴油勝過吸收水。