TVOC ppb的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

TVOC ppb的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦陳秀玲、林洺秀寫的 健身器材製造業勞工職業暴露與健康傷害預防技術手冊IOSH101-T-119 和陳秀玲、林洺秀的 健身器材製造業勞工職業暴露與健康傷害之研究-黃100年度研究計畫M307都 可以從中找到所需的評價。

另外網站TVOC的ppb单位如何换算? - 知乎也說明:ppm指的是溶质质量占全部溶液质量的百万分比,其实就是百万分之几,ppb是十亿分之几。100ppb=0.1ppm. 计算ppm时,分子分母的性质都一样,都是体积。

這兩本書分別來自勞動部勞動及職業安全衛生研究所 和勞動部勞動及職業安全衛生研究所所出版 。

逢甲大學 環境工程與科學學系 林秋裕、呂晃志所指導 阮玉丹維的 氧化鈦塗覆銅網用於去除氣相和水相有機物 (2021),提出TVOC ppb關鍵因素是什麼,來自於VOCs 移除。

而第二篇論文中原大學 環境工程學系 王玉純所指導 顏琳的 整合空間資訊評估微感測器輔助空氣品質分析以觀音工業區為例 (2021),提出因為有 微型感測器、揮發性有機物、克利金空間內插法、追蹤溯源的重點而找出了 TVOC ppb的解答。

最後網站piD-TECH TVOC Monitor - 沃亞科技則補充:piD-TECH TVOC Monitor是一款專門針對空氣中存在的VOC氣體,進行24小時線上監測具體濃度值的標準化、模組化 ... 多種量測範圍單位可選:%LEL、%VOL、ppm、ppb、ug/m3.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了TVOC ppb,大家也想知道這些:

健身器材製造業勞工職業暴露與健康傷害預防技術手冊IOSH101-T-119

為了解決TVOC ppb的問題,作者陳秀玲、林洺秀 這樣論述:

  運動器材製造過程包含器具切割、噴漆、銲接、零件組裝、拋光、品保品管等,其中以銲接作業與噴漆為主要之工作型態,勞工所暴露之危害物質也較為廣泛,包含金屬粉塵、臭氧、活性含氧物種 (Reactive oxygen species, ROS)、揮發性有機化合物 (Volatile organic compounds, VOCs)等。   本研究以外銷健身器材之製造公司為主要研究場所,進行作業環境空氣中臭氧、環境中VOCs、空氣重金屬暴露與ROS之濃度評估。另亦進行健身器材作業勞工之生物暴露偵測,如分析血液重金屬,而勞工之生物效應偵測則評估氧化傷害 (MDA, DNA strand breaks

, telomere length)、肺部發炎指標 (TNF-α)及心血管疾病指標 (hs-CRP)之評估。   結果顯示臭氧與ROS濃度結果以銲接區濃度為最高,噴漆區次之,皆高於OSHA建議標準值為100 ppb;TVOC結果則顯示噴漆區濃度較高;重金屬分析結果則顯示低於容許濃度值;ROS濃度則顯示手工銲接與自動電銲區域之粒狀ROS濃度分布有較高之情形,另氣狀ROS濃度於A、B兩廠之濃度皆高於粒狀濃度,未來可對氣狀ROS物質進行相關防護及探討。各區域之空氣中重金屬濃度,如Co、Ni、Fe、Pb幾乎存在於粗粒徑中(介於6.5-21 μm),結果亦顯示某些金屬如Zn於小粒徑中亦有較高的濃度,沖床

區之重金屬濃度則主要累積於粒徑為1-6 μm之粉塵中,粉體則以粒徑範圍6-10 μm之粉塵中累積較高濃度之重金屬。於製造區域,重金屬幾乎都於粗粒徑粉塵中有較高濃度,而粗粒徑之粉塵可建議勞工使用個人防護具,以避免勞工暴露於過量之重金屬,然少數工作區域重金屬亦累積於0.4-1μm之細粒徑粉塵中,因此對於細粒徑之粉塵防護應為後續防護重點。   勞工之肺部發炎反應指標TNF-α及MDA之分析結果顯示暴露組勞工有顯著偏高於對照組勞工;染色體端粒長度Telomere length之分析結果則相反之,此結果顯示此類型之作業場所,勞工之職業暴露可能已經造成體內氧化傷害與發炎反應。此外,個人習慣、服務年資與粉塵

暴露可能為干擾因子,可得知這些干擾因子會影響勞工體內氧化傷害、TL及肺部發炎反應指標TNF-α。另暴露組勞工無配戴防護具者其血中Cr、Fe、Co、Cu、Zn、Mn、Cd、As濃度高於暴露組勞工配戴防護具者,此結果顯示現場勞工如有配戴呼吸防護具,其體內重金屬均有顯著較低之現象,因此於此類型工作場所,除了裝置環境控制設施外,配戴呼吸防護具為有效之防護重金屬暴露之方法。令勞工個人習慣與於烤漆區TVOCs濃度明顯高,因此也應針對所使用之漆種類與MSDS內容進行檢討,選擇對勞工危害較低之用漆以保護勞工之健康。

氧化鈦塗覆銅網用於去除氣相和水相有機物

為了解決TVOC ppb的問題,作者阮玉丹維 這樣論述:

根據統計,人類有 87-90% 的時間是在建築物或公寓內度過,然而,因大幅使用傢俱增加了油漆、膠水等的用量,導致室內揮發性有機化合物(VOCs)濃度增加;相關研究說明,揮發性有機化合物會對人類造成嚴重慢性影響,如:血液問題和癌症。為了移除VOCs及淨化室內環境,商業化空氣過濾元件已被廣泛用於空調系統和室內空氣淨化器,但相關技術並不新穎,且還要耗用大量的電能來維持運作。 光催化是普遍應用於VOCs處理的方法之一,在本研究中,銅網和不銹鋼分別被用作金屬基材,採用膠黏法將二氧化鈦(TiO2)塗覆在基材的金屬表面,然後,分別將模擬日光及高壓電源激發電漿施加在金屬基板上,作為催化劑的輔助能量

,在催化輔助電漿作用下,能處理 VOCs達 92.5% 並產生氫氣。為了分析處理廢水和排放物中氣態 VOCs 的能力,本研究使用了紫外可見分光光度計和便攜式VOC檢測器等儀器。此外,光學顯微鏡 (OM)、拉曼光譜和 GC 亦應用於多種結果分析。

健身器材製造業勞工職業暴露與健康傷害之研究-黃100年度研究計畫M307

為了解決TVOC ppb的問題,作者陳秀玲、林洺秀 這樣論述:

  運動器材製造過程包含器具切割、噴漆、銲接、零件組裝、拋光、品保品管等,其中以銲接作業與噴漆為主要之工作型態,勞工所暴露之危害物質也較為廣泛,包含金屬粉塵、臭氧、活性含氧物種 (Reactive oxygen species, ROS)、揮發性有機化合物 (Volatile organic compounds, VOCs)等。   本研究以外銷健身器材之製造公司為主要研究場所,進行作業環境空氣中臭氧、環境中VOCs、空氣重金屬暴露與ROS之濃度評估。另亦進行健身器材作業勞工之生物暴露偵測,如分析血液重金屬,而勞工之生物效應偵測則評估氧化傷害 (MDA, DNA strand break

s, telomere length)、肺部發炎指標 (TNF-α)及心血管疾病指標 (hs-CRP)之評估。   本研究目前完成41個作業環境測定空氣採樣,勞工生物偵測則完成124位勞工之分析。初步結果顯示臭氧與ROS濃度結果以銲接區濃度為最高,噴漆區次之,皆高於OSHA建議標準值為100 ppb;TVOC結果則顯示噴漆區濃度較高;重金屬分析結果則顯示低於容許濃度值;ROS濃度則顯示手工銲接與自動電銲區域之粒狀ROS濃度分布有較高之情形,另氣狀ROS濃度於A、B兩廠之濃度皆高於粒狀濃度,未來可對氣狀ROS物質進行相關防護及探討。各區域之空氣中重金屬濃度,如Co、Ni、Fe、Pb幾乎存在於粗

粒徑中(介於6.5-21 μm),結果亦顯示某些金屬如Zn於小粒徑中亦有較高的濃度,沖床區之重金屬濃度則主要累積於粒徑為1-6 μm之粉塵中,粉體則以粒徑範圍6-10 μm之粉塵中累積較高濃度之重金屬。於製造區域,重金屬幾乎都於粗粒徑粉塵中有較高濃度,而粗粒徑之粉塵可建議勞工使用個人防護具,以避免勞工暴露於過量之重金屬,然少數工作區域重金屬亦累積於0.4-1μm之細粒徑粉塵中,因此對於細粒徑之粉塵防護應為後續防護重點。   勞工之肺部發炎反應指標TNF-α及MDA之分析結果顯示暴露組勞工有顯著偏高於對照組勞工;染色體端粒長度Telomere length之分析結果則相反之,此結果顯示此類型之

作業場所,勞工之職業暴露可能已經造成體內氧化傷害與發炎反應。此外,個人習慣、服務年資與粉塵暴露可能為干擾因子,可得知這些干擾因子會影響勞工體內氧化傷害、TL及肺部發炎反應指標TNF-α。另暴露組勞工無配戴防護具者其血中Cr、Fe、Co、Cu、Zn、Mn、Cd、As濃度高於暴露組勞工配戴防護具者,此結果顯示現場勞工如有配戴呼吸防護具,其體內重金屬均有顯著較低之現象,因此於此類型工作場所,配戴呼吸防護具為有效之防護重金屬暴露之方法。   研究結果顯示勞工之職業錳金屬與粒狀ROS之暴露會導致勞工體內氧化傷害與染色體端粒變短,根據研究顯示染色體端粒變短與心血管疾病、高密度膽固醇累積與增加氧化傷害有關

,因此本研究結果也可推論此類型之職業暴露會增加勞工未來罹患相關健康疾患之可能性。

整合空間資訊評估微感測器輔助空氣品質分析以觀音工業區為例

為了解決TVOC ppb的問題,作者顏琳 這樣論述:

近幾年來,工業區排放 VOCs 產生異味污染問題,逐漸引起鄰近住戶與環保團體的關注,而觀音工業區坐落上百家工廠,造成該區域空氣異味污染來源辨識不易,因應各國推動以空氣品質微型感測器追蹤溯源之應用,本研究透過固定污染源之工廠申報量,分析其與異味污染陳情案件相關性,納入微型感測器數據,以克利金空間內插法進行污染潛勢分析,並結合氣象因子追蹤溯源,期望提供未來環保人員稽查工廠科技佐證,強化舉證工廠空氣污染溯源功能。本研究採用環保署公布之 108 年異味污染陳情案件與固定污染源工廠申報量以地理資訊系統進行空間分析,探討兩者之相關性,再納入桃園市環保局架設之微型感測器,透過克利金空間內插法推估該地區 T

VOC 濃度之空間分布,分析高污染潛勢區位,並進一步以短期高污染偶發事件追蹤溯源,結合氣象因子,掌握區域性陳情異味污染工廠來源。研究結果發現,觀音工業區之異味污染陳情案件約有 200 件落在工業四路與國建四路區段,108 年 7 月至 9 月微型空品感測器測得濃度約介於 0 ppb 至 1000 ppb 之間,對照區域路段發現,工業四路皆為污染潛勢區位,並以同心圓之形式向外遞減。此外,本研究進一步以污染潛勢區位中的 7 顆微型感測器,結合風向及風速,進行污染溯源追蹤,結果發現 108 年 7 月至 9 月 PM2.5 逐時平均濃度於上午(06 至 09 時)及下午(18至 22 時)呈現濃度高

峰,推測受交通源上下班車流量影響;TVOC 濃度則於夜間 19時至隔日早上 6 時約為 350 ppb 至 487 ppb,而早上 7 時至 18 時平均濃度為 425 ppb至 489 ppb,可以看出微型感測器 TVOC 夜間濃度多高於日間濃度,而結合具有異常濃度之微型感測器、上風與下風處微型感測器濃度,以及固定污染源空污費申報量,推測使觀音 106-21 微型感測器具有異常濃度之相關行業別為紡織業及其他化學製品製造業;導致觀音 106-25 監測到異常濃度相關行業別為紡織業及電子零組件製造業。此外,本研究藉由短期突發事件進行溯源追蹤,結果與空間分布溯源相同,推測觀音-106-21 於 1

08 年 7 月 19 日之異常濃度受極 O 化學、日 OO 興業及合 O 電線等工廠污染源排放影響,7 月 22 日之污染則可能源自臺灣 OO 化學工廠之影響。綜整追蹤溯源之分析結果,本研究發現上風處微型感測器之濃度分佈較為聚集,多為大氣背景濃度;下風處之微型感測器濃度約高出 4-5 倍,推斷可能受鄰近製程逸散或排放所影響。本研究證實利用微型感測器監測濃度進行追蹤溯源之可行性,建議可將此概念應用於智慧稽查。