dc to dc升壓模組的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

dc to dc升壓模組的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦曹永忠許智誠蔡英德寫的 Ameba 8710 Wifi氣氛燈硬體開發(智慧家庭篇) Using Ameba 8710 to Develop a WIFI-Controled Hue Light Bulb (Smart Home Serise) 和GalaxyLee的 ThinkPad使用大全:商用筆電王者完全解析都 可以從中找到所需的評價。

另外網站多线消防广播图解- 弱电工程也說明:从上图可以看到,该产品有5组广播接线卡,每组可接出8路广播线路, ... 电源盘不能直接为其供电,需要DC/AC升压模块(也有产品内置该模块)。

這兩本書分別來自千華駐科技有限公司 和李河漢所出版 。

國立臺北科技大學 電機工程系 胡國英、姚宇桐所指導 陳俊宇的 應用無橋式升降壓型功率因數修正器及LLC諧振式轉換器於USB電力傳輸 (2021),提出dc to dc升壓模組關鍵因素是什麼,來自於通用輸入、無橋式、升降壓型、高功率因數、LLC諧振式轉換器、USB電力傳輸。

而第二篇論文國立高雄師範大學 工業科技教育學系 張美珍所指導 藍星宇的 以機關盒STEM統整課程提升國中學生數學學習興趣及數學價值認同之研究 (2021),提出因為有 STEM、數學學習興趣、數學價值認同、行動研究的重點而找出了 dc to dc升壓模組的解答。

最後網站DC-DC 大功率可調式升壓模組100W 帶數位電壓表則補充:DC -DC 大功率可調式升壓模組100W 帶數位電壓表輸入3.0~35V 可調升壓至 3.5~35V 100W. 顯示部分採用更先進的電壓表微處理器,升壓部分採用美國原裝進口升壓控制器,通過 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了dc to dc升壓模組,大家也想知道這些:

Ameba 8710 Wifi氣氛燈硬體開發(智慧家庭篇) Using Ameba 8710 to Develop a WIFI-Controled Hue Light Bulb (Smart Home Serise)

為了解決dc to dc升壓模組的問題,作者曹永忠許智誠蔡英德 這樣論述:

  本書針對智慧家庭為主軸,運用Ameba 8195 AM/Ameba 8170 AF開發板進行開發各種智慧家庭產品,主要是給讀者熟悉使用Ameba 8195 AM/Ameba 8170 AF開發板來開發物聯網之各樣產品之原型(ProtoTyping),進而介紹這些產品衍伸出來的技術、程式撰寫技巧,以漸進式的方法介紹、使用方式、電路連接範例等等。     Ameba 8195 AM/Ameba 8170 AF開發板最強大的不只是它相容於Arduino開發板,而是它網路功能與簡單易學的模組函式庫,幾乎Maker想到應用於物聯網開發的東西,可以透過眾多的周邊模組,都可以輕易的將想要完成的東西用堆積

木的方式快速建立,而且價格比原廠Arduino Yun或Arduino + Wifi  Shield更具優勢,最強大的是這些周邊模組對應的函式庫,瑞昱科技有專職的研發人員不斷的支持,讓Maker不需要具有深厚的電子、電機與電路能力,就可以輕易駕御這些模組。 作者簡介   曹永忠 (Yung-Chung Tsao)      國立中央大學資訊管理學系博士,目前在國立暨南國際大學電機工程學系與國立高雄科技大學商務資訊應用系兼任助理教授與自由作家,專注於軟體工程、軟體開發與設計、物件導向程式設計、物聯網系統開發、Arduino開發、嵌入式系統開發。長期投入資訊系統設計與開發、企業應用系統開發、軟體

工程、物聯網系統開發、軟硬體技術整合等領域,並持續發表作品及相關專業著作。     Email:[email protected]   Line ID:dr.brucetsao WeChat:dr_brucetsao   作者網站:www.cs.pu.edu.tw/~yctsao/myprofile.php   臉書社群(Arduino.Taiwan):www.facebook.com/groups/Arduino.Taiwan/   Github網站:github.com/brucetsao/   原始碼網址:github.com/brucetsao/ESP_Bulb    Youtube

:www.youtube.com/channel/UCcYG2yY_u0m1aotcA4hrRgQ   許智誠(Chih-Cheng Hsu)     美國加州大學洛杉磯分校(UCLA)資訊工程系博士,曾任職於美國IBM等軟體公司多年,現任教於中央大學資訊管理學系專任副教授,主要研究為軟體工程、設計流程與自動化、數位教學、雲端裝置、多層式網頁系統、系統整合、金融資料探勘、Python建置(金融)資料探勘系統。     Email: [email protected]   作者網頁:www.mgt.ncu.edu.tw/~khsu/   蔡英德 (Yin-Te Tsai)     國立清華大

學資訊科學博士,目前是靜宜大學資訊傳播工程學系教授,靜宜大學資訊學院院長及靜宜大學人工智慧創新應用研發中心主任。曾擔任台灣資訊傳播學會理事長,台灣國際計算器程式競賽暨檢定學會理事,台灣演算法與計算理論學會理事、監事。主要研究為演算法設計與分析、生物資訊、軟體開發、智慧計算與應用。     Email:[email protected]   作者網頁:www.csce.pu.edu.tw/people/bio.php?PID=6#personal_writing 自序        自序        自序        目 錄      物聯網系列 控制LED燈泡 發光二極體

控制發光二極體發光 章節小結 控制雙色LED燈泡 雙色發光二極體 控制雙色發光二極體發光 章節小結 控制全彩LED燈泡 全彩二極體 控制全彩發光二極體發光 章節小結 全彩LED燈泡混色原理 全彩二極體 混色控制全彩發光二極體發光 章節小結 控制WS2812燈泡模組 WS2812B全彩燈泡模組特點 主要應用領域 串列傳輸 WS2812B全彩燈泡模組 控制WS2812B全彩燈泡模組 混色控制WS2812B全彩燈泡模組 命令控制測試 章節小結 透過WIFI控制WS2812燈泡模組 透過WIFI控制WS2812B全彩燈泡模組發光 安裝TCP/IP命令控制程式 設定TCP/IP命令控制環境 TCP/IP

命令控制測試 章節小結 氣氛燈泡外殼組裝 LED燈泡外殼 E27 金屬燈座殼 接出E27 金屬燈座殼電力線 準備AC交流轉DC直流變壓器 連接AC交流轉DC直流變壓器 連接DC輸出 放入AC交流轉DC直流變壓器於燈泡內 準備WS2812B 彩色燈泡模組 WS2812B 彩色燈泡模組電路連接 完成Ameba 8710 AF開發板之實體電路 測試Ameba 8710 AF開發板之實體電路 Ameba 8710 AF開發板置入燈泡 準備燈泡隔板 裁減燈泡隔板 WS2812B 彩色燈泡模組黏上隔板 WS2812B 彩色燈泡隔板放置燈泡上 蓋上燈泡上蓋 完成組立 燈泡放置燈座與插上電源 章節小結 透過W

IFI熱點模式控制WS2812燈泡模組 透過WIFI熱點模式控制WS2812B全彩燈泡模組發光 安裝TCP/IP命令控制程式 設定TCP/IP命令控制環境 TCP/IP命令控制測試 章節小結 本書總結 附錄 Ameba 8710AF腳位圖 Ameba 8710 AF腳位表 Ameba 8195 AM腳位圖 Ameba RTL8195AM更新韌體按鈕圖 Ameba RTL8195AM 更換DAP Firmware Ameba RTL8195AM 安裝驅動程式 Ameba RTL8195AM使用多組UART Ameba RTL8195AM使用多組I2C 燈泡變壓器腳位圖 參考文獻 作者序  

  從第一本書是到今天,沒想到一晃眼就進入第五年,而出版繁簡體的電子書竟也破百本大關,當初出版電子書是希望能夠在教育界開一門Maker自造者相關的課程,沒想到一寫就已過4年,而這些書都是我學習當一個Maker累積下來的成果。     這本書可以說是我的書另一個里程碑,很久以前,這個系列開始以駭客的觀點為主,希望Maker可以擁有駭客的觀點、技術、能力,駭入每一個產品設計思維,並且成功的重製、開發、超越原有的產品設計,這才是一位對社會有貢獻的『駭客』。     如許多學習程式設計的學子,為了最新的科技潮流,使用著最新的科技工具與軟體元件,當他們面對許多原有的軟體元件沒有支持的需求或軟體架構下沒有

直接直持的開發工具,此時就產生了莫大的開發瓶頸,這些都是為了追求最新的科技技術而忘卻了學習原有基礎科技訓練所致。     筆著鑒於這樣的困境,思考著『如何駭入眾人現有知識寶庫轉換為我的知識』的思維,如果我們可以駭入產品結構與設計思維,那麼了解產品的機構運作原理與方法就不是一件難事了。更進一步我們可以將原有產品改造、升級、創新,並可以將學習到的技術運用其他技術或新技術領域,透過這樣學習思維與方法,可以更快速的掌握研發與製造的核心技術,相信這樣的學習方式,會比起在已建構好的開發模組或學習套件中學習某個新技術或原理,來的更踏實的多。     目前許多學子在學習程式設計之時,恐怕最不能了解的問題是,我

為何要寫九九乘法表、為何要寫遞迴程式,為何要寫成函式型式…等等疑問,只因為在學校的學子,學習程式是為了可以了解『撰寫程式』的邏輯,並訓練且建立如何運用程式邏輯的能力,解譯現實中面對的問題。然而現實中的問題往往太過於複雜,授課的老師無法有多餘的時間與資源去解釋現實中複雜問題,期望能將現實中複雜問題淬鍊成邏輯上的思路,加以訓練學生其解題思路,但是眾多學子宥於現實問題的困惑,無法單純用純粹的解題思路來進行學習與訓練,反而以現實中的複雜來反駁老師教學太過學理,沒有實務上的應用為由,拒絕深入學習,這樣的情形,反而自己造成了學習上的障礙。     本系列的書籍,針對目前學習上的盲點,希望讀者當一位產品駭客

,將現有產品的產品透過逆向工程的手法,進而了解核心控制系統之軟硬體,再透過簡單易學的單晶片開發板與C語言,重新開發出原有產品,進而改進、加強、創新其原有產品固有思維與架構。如此一來,因為學子們進行『重新開發產品』過程之中,可以很有把握的了解自己正在進行什麼,對於學習過程之中,透過實務需求導引著開發過程,可以讓學子們讓實務產出與邏輯化思考產生關連,如此可以一掃過去陰霾,更踏實的進行學習。     這三年多以來的經驗分享,逐漸在這群學子身上看到發芽,開始成長,覺得Maker的教育方式,極有可能在未來成為教育的主流,相信我每日、每月、每年不斷的努力之下,未來Maker的教育、推廣、普及、成熟將指日可

待。     最後,請大家可以加入Maker的Open Knowledge的行列。   曹永忠 於貓咪樂園

應用無橋式升降壓型功率因數修正器及LLC諧振式轉換器於USB電力傳輸

為了解決dc to dc升壓模組的問題,作者陳俊宇 這樣論述:

摘 要 iABSTRACT ii致謝 iv目錄 v圖目錄 x表目錄 xxix第一章 緒論 11.1 研究動機及目的 11.2 研究方法 111.3 論文內容架構 12第二章 先前技術之動作原理與分析 132.1 前言 132.2 有橋式升降壓型功率因數修正電路架構與其動作原理 132.3 諧振式轉換器架構與特性 182.3.1 串聯諧振式轉換器 182.3.2 並聯諧振式轉換器 202.3.3 串並聯諧振式轉換器 222.4 USB Power Delivery 25第三章 所提無橋式升降壓型功率因數修正電路與LLC諧振式轉換器之動作原理與分析 263

.1 前言 263.2 電路符號定義及假設 263.3 所提電路之工作原理與數學分析 293.3.1 無橋式升降壓型功率因數修正電路之運作行為 303.3.2 無橋式升降壓型功率因數修正電路之電壓轉換比 333.3.3 無橋式升降壓型功率因數修正電路之電感電流邊界條件 353.3.4 無橋式升降壓型功率因數修正電路之實際電壓轉換比 373.3.5 LLC諧振轉換電路之運作行為 383.3.6 LLC之電壓增益 533.3.7 LLC電壓增益與K值關係 553.3.8 電壓增益與品質因素Q關係 57第四章 系統之硬體電路設計 584.1 前言 584.2 系統架構 5

84.3 架構之系統規格 604.4 系統設計 614.4.1 輸入端之差動濾波器設計 614.4.2 電感L1與電感L2設計 68(A) 電感L1與L2之感量 68(B) 電感L1與L2之磁芯選用 724.4.3 輸出電容Co1設計 754.4.5 模擬變載輸出電壓變動量量測 764.4.6 諧振槽參數設計 79(A) 變壓器Tr之匝數比n 79(B) 輸出等效阻抗Rac 79(C) 品質因數Q 80(D) 諧振元件Lr、Cr、Lm參數 84(E) 磁性元件Lm、Lr繞製 854.4.5 輸出電容Co2設計 924.4.6 同步整流器IC說明 934.4

.7 功率開關與二極體之選配 95(A) 升降壓型功率因數修正器之開關元件選配 96(B) LLC諧振式轉換器之開關元件選配 974.4.7 驅動電路設計 984.5 電壓偵測電路設計 994.6 元件總表 102第五章 軟體規劃及程式設計流程 1035.1 前言 1035.2 程式動作流程 1035.2.1 ADC取樣與資料處理 1045.2.2 移動均值濾波模組 1065.2.3 PI控制器模組與限制器模組 1085.2.4 控制開關訊號模組 110第六章 模擬與實作波形 1126.1 前言 1126.2 電路模擬結果 1126.2.1 電路於15W功率

等級之模擬波形圖 1146.2.2 電路於27W功率等級之模擬波形圖 1196.2.3 電路於45W功率等級之模擬波形圖 1246.2.4 電路於100W功率等級之模擬波形圖 1296.3 所提功率因數修正電路的實驗波形圖 1356.3.1 單級功率因數修正電路於16.6W功率等級之實驗波形圖 136(A) 輸入電壓85V之波形量測 136(B) 輸入電壓110V之波形量測 139(C) 輸入電壓220V之波形量測 142(D) 輸入電壓264V之波形量測 1456.3.2 單級功率因數修正電路於30W功率等級之實驗波形圖 148(A) 輸入電壓85V之波形量測 148

(B) 輸入電壓110V之波形量測 152(C) 輸入電壓220V之波形量測 155(D) 輸入電壓264V之波形量測 1586.3.3 單級功率因數修正電路於50W功率等級之實驗波形圖 161(A) 輸入電壓85V之波形量測 161(B) 輸入電壓110V之波形量測 164(C) 輸入電壓220V之波形量測 167(D) 輸入電壓264V之波形量測 1706.3.4 單級功率因數修正電路於111W功率等級之實驗波形圖 173(A) 輸入電壓85V之波形量測 173(B) 輸入電壓110V之波形量測 177(C) 輸入電壓220V之波形量測 181(D) 輸入電壓264

V之波形量測 1846.3.5 單級功率因數修正電路實驗波形比較結果之小結 188(A) 16.6W之功率等級 188(B) 30W之功率等級 189(C) 50W之功率等級 189(D) 100W之功率等級 1906.4 所採用之LLC諧振式電路的實驗波形圖 1926.4.1 單級LLC諧振式電路於15W功率等級之實驗波形圖 1926.4.2 單級LLC諧振式電路於27W功率等級之實驗波形圖 1966.4.3 單級LLC諧振式電路於45W功率等級之實驗波形圖 2016.4.4 單級LLC諧振式電路於100W功率等級之實驗波形圖 2056.5 所提電路之變載測試 211

6.5.1 系統於15W功率等級之變載實驗波形圖 2116.5.2 系統於27W功率等級之變載實驗波形圖 2206.5.3 系統於45W功率等級之變載實驗波形圖 2296.5.4 系統於100W功率等級之變載實驗波形圖 2386.6 實驗相關參數量測 2496.7 損失分析 253(1) 開關S1~S7之損失 253(2) 二極體D1、D2、D3之損失 255(3) 磁性元件之損失 255(5) 電容元件之損失 257(6) 損失分析總結 258第七章 文獻比較 260第八章 結論與未來展望 2628.1結論 2628.2 未來展望 262參考文獻 263符號彙

編 272

ThinkPad使用大全:商用筆電王者完全解析

為了解決dc to dc升壓模組的問題,作者GalaxyLee 這樣論述:

全球百科級ThinkPad專書,搞懂商用筆電王者,一本就通!   ◎取材自歷次參訪ThinkPad日本研發中心(Yamato Lab),詳細揭露ThinkPad三大硬體特色與設計哲學。   ◎全彩圖文介紹平時較難接觸的原廠各式周邊裝置實機,深入活用ThinkPad專屬周邊。   ◎ThinkPad BIOS與專屬軟體完整介紹,鉅細靡遺,深入淺出,徹底發揮主機實力。   ★藉由本書,除了清楚硬軟體規格面的資訊,更能對Yamato Lab設計ThinkPad時所在意的機構、鍵盤、散熱這三大設計,有更深一步的體會。   由ThinkPad非官方情報站站長撰寫,全書共九大章節,涵蓋Think

Pad主機、原廠周邊、專屬軟體,全球百科級ThinkPad專書。   針對橫跨2018~2020年主流機種詳細介紹硬體諸元,新機採購不再鴨子聽雷,同時提供超完整功能說明。   深入介紹商用筆電王者:ThinkPad的軟硬體功能、特色及周邊設備,適合採購參考、後續操作指南以及進一步學習進階使用方法。  

以機關盒STEM統整課程提升國中學生數學學習興趣及數學價值認同之研究

為了解決dc to dc升壓模組的問題,作者藍星宇 這樣論述:

中文摘要    本研究旨在探討機關盒STEM統整課程的發展歷程,以及課程對國中學生數學學習興趣及價值認同的提升效果,以供其他教師作為設計STEM課程的參考。本研究以參加國立科學工藝博物館及春曉國中(化名)營隊活動之國中學生為研究對象,進行二次循環,各為兩天共12節課的教學活動,採用行動研究法,透過觀察、前後測量表、開放式問卷、學習單等方式蒐集資料,再加以整理、分析與歸納出研究結果。本研究的主要結論如下:機關盒STEM統整課程適合做為跨領域課程在國中階段實施,在實施過程中面臨教師人力不足的問題時,可將部份工作交給學生協助,且可透過實作活動及增加引導問題的方式,使學生提升在數學課程中的專注度;機

關盒STEM統整課程能有效提升國中學生數學學習興趣;機關盒STEM統整課程能有效提升國中學生數學價值認同。    最後,根據上述研究結論提出相關建議,作為國中教師設計STEM統整課程,以及未來從事相關研究者之參考。