led限流電阻位置的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

led限流電阻位置的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李春雄寫的 MakeCode Blocks程式設計最佳範本 -使用micro:bit - 最新版 - 附MOSME行動學習一點通:影音.加值 和(美)托尼·科迪班的 尋找熱量的足跡:電子產品熱設計中的溫升與熱沉都 可以從中找到所需的評價。

另外網站电子电路学习笔记(7)——LED发光二极管限流 ... - 文章整合也說明:但是将LED直接连接到电源会导致LED烧坏。您必须使用与LED串联的限流电阻进行保护。 计算电阻值需要从数据表中收集有关LED的一些信息。

這兩本書分別來自台科大 和機械工業所出版 。

國立成功大學 微電子工程研究所 陳志方、江孟學所指導 吳奕廷的 輸出級與靜態隨機存取記憶體之鰭式與閘極全包覆式電晶體設計 (2021),提出led限流電阻位置關鍵因素是什麼,來自於鰭式電晶體、閘極全包覆式電晶體、靜態隨機存取記憶體、插入氧化層鰭式電晶體、半導體製程與元件模擬、輸出級、橫向擴散金氧半電容元件、奈米線、奈米片、叉子記憶體。

而第二篇論文國立陽明交通大學 電子物理系所 周武清所指導 戴進吉的 應用於功率元件之氮化鎵高電子遷移率電晶體的磊晶成長 與特性分析 (2021),提出因為有 氮化鎵、鎂摻雜、鐵摻雜、三維成長、有機金屬化學氣相沈積、高電子遷移率電晶體的重點而找出了 led限流電阻位置的解答。

最後網站白光SD3038 B 高效率恒流限流LED 驱动白光SD3038B則補充:双节干电池或锂电池作为输入,可驱动大功率负载,具有恒压输出且具有限流功能。 最大输出电压取决于MOS 管耐压。典型应用电路如图2 所示。恒压值由电阻R1 与Rf.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了led限流電阻位置,大家也想知道這些:

MakeCode Blocks程式設計最佳範本 -使用micro:bit - 最新版 - 附MOSME行動學習一點通:影音.加值

為了解決led限流電阻位置的問題,作者李春雄 這樣論述:

  1. 循序漸進介紹 micro:bit 開發板,引導讀者輕鬆控制硬體,增加學習成就感。   2. 利用「圖塊程式積木」控制開發板,不用「寫」程式,也能輕鬆訓練邏輯思維。   3. 完整的程式設計範例,讓讀者從「邏輯思維」能力提昇至「解決問題」能力。

輸出級與靜態隨機存取記憶體之鰭式與閘極全包覆式電晶體設計

為了解決led限流電阻位置的問題,作者吳奕廷 這樣論述:

本論文採用半導體製程與元件模擬軟體(Technology Computer Aided Design, TCAD)來研究現今鰭式電晶體(FinFET)所遭遇到的挑戰。和傳統的平面電晶體相比,鰭式電晶體所遭遇到的第一個挑戰是其橫向擴散金氧半電容元件(laterally-diffused MOSFET, LDMOS)的特性較差,這是因為其元件漂移區(drift region)的鰭式結構寬度很小(截面積不足)而導致了高導通電阻的產生,本論文的第三章提出了一種新的製程方法,將原本橫向擴散金氧半電容元件的鰭狀飄移區(fin-type drift region)改成完整的塊狀平面飄移區(bulk pla

nar drift region),使得導通電阻可以大幅下降,而不減損崩潰電壓。鰭式電晶體所遭遇到的第二個挑戰是其等效通道寬度只能是非連續的特定值。由於整片晶圓上的所有鰭式電晶體的通道寬度(fin width)與高度(fin height)皆相同,改變鰭的根數是調變電晶體等效通道寬度的唯一方法。由於鰭的根數一定是整數,所以在固定電壓下,電晶體的電流也只能是不連續的特定值。對於靜態隨機存取記憶體來說,其上拉(pull-up)電晶體相較於閘門(pass-gate)電晶體的電流比例(上拉比例pull-up ratio)必須是某個小於1的特定值,才能有最好的寫入能力與良率。然而,當鰭式電晶體的電流只能

是特定值的時候,這個比例將難以被達成。本論文的第四章提出了一個新的方法以達成這個比例。藉由插入一個薄的氧化層在鰭通道內,將鰭通道將分割成上通道和下通道。接著,藉由重摻雜上拉電晶體的上通道使其不導通,上拉電晶體的導通電流將由僅存的下通道高度來決定,氧化層的位置越低,下通道高度就越低,上拉電晶體的導通電流由氧化層的位置來決定。鰭式電晶體所遭遇到的第三個挑戰,在於其短通道效應的抑制能力不足以應付元件的持續微縮。今天,大部份的學者專家都認為,當未來電晶體的閘極長度小於15奈米的時候,現有的鰭式電晶體將被閘極全包覆式電晶體(Gate-all-around transistor)所取代。然而,閘極全包覆式

電晶體的缺點在於,奈米線(nanowire)與奈米線間的垂直間距至少需要大於10奈米,才能提供足夠的空間來填充具有一定厚度的功函數金屬(work function metal)。因此,在一樣的元件高度下,所能堆疊的奈米線數目將十分有限,導通電流不高。僅管,有學者專家提出將奈米線拓寬成奈米片(nanosheet)來增加導通電流,這個方式會增加電晶體面積導致成本增加。本論文的第五章提出了一個新的高介電係數插入氧化層鰭式電晶體(high-permittivity inserted-oxide FinFET, iFinFET)來提升電流。藉由利用一個超薄(約3奈米厚)的高介電係數材料來取代原本奈米線間

10奈米間距的功函數金屬,相同元件高度下可以堆疊更多的奈米線。最後,本論文的第六章提出了一種新型態的混合靜態隨機存取記憶體。藉由使用高電流的插入氧化層鰭式電晶體當作閘門(pass-gate)與下拉(pull-down)電晶體,再使用低電流但低漏電的閘極全包覆式電晶體當做上拉(pull-up)電晶體,靜態隨機存取記憶體的上拉比率得以最佳化,使得良率提升,最小操作電壓下降,功率消耗減少,記憶體面積與存取時間保持不變。本論文的第六章也針對了最近提出的叉子記憶體(Forksheet SRAM)進行了完整的分析。

尋找熱量的足跡:電子產品熱設計中的溫升與熱沉

為了解決led限流電阻位置的問題,作者(美)托尼·科迪班 這樣論述:

以故事的形式講述了電子產品設計中不經意或者非常容易忽視的小問題,詳細說明了一些設計的謬誤,對於提高產品可靠性有著非常重要的指導意義。本書具有措辭詼諧幽默、內容豐富、貼近實際產品和涉及行業廣泛等特點。詼諧的言語承載著寶貴的經驗知識,實乃電子設備熱設計行業難得一見的好書。 Tony Kordyban自從1980年就開始從事電子冷卻和相關的寫作工作。他在底特律大學獲得機械工程學士學位,在斯坦福大學獲得機械工程碩士學位,專業為熱動力學。他絕大多數的電子冷卻經驗知識都是通過自己和在貝爾實驗室、泰樂通訊和艾默生網路能源等公司同事的工作失誤和差錯中獲得。為了避免其他人犯同樣的錯誤,他撰寫

了兩本書;《Hot Air Rises and Heat Sinks: Everything You Know About Cooling Electronics Is Wrong》《More Hot Air》,並且均由ASME出版發行。除此之外,他也寫了一些非正式主題的文章,並且發表在Electronics Cooling雜誌和CoolingZone.com網站。   李波,男,生於1982年9月,同濟大學建築環境與設備工程學士,上海理工大學工程熱物理碩士,在校期間主要研究方向為電子設備冷卻技術。曾就職于台達電子企業管理(上海)有限公司和明導(上海)電子科技有限公司。現為熱領(上海)科技有限

公司電子設備熱設計技術主管,負責電子設備熱設計、熱模擬技術的應用、推廣和培訓等相關工作。曾出版《FloTHERM軟體基礎與應用實例》,《FloEFD流動與傳熱模擬入門及案例分析》和《笑談熱設計》等書。   陳永國,男,2004年畢業于上海交通大學熱能工程研究所,獲得工學博士學位。畢業後一直從事通信設備和消費電子等產品的熱設計和開發工作。曾供職于英業達上海有限公司,2006年加入思科系統中國研發有限公司工作至今。曾擔任SEMI-THERM專案委員會成員。自2013年起,受邀擔任國際期刊《Energy Conversion and Management》審稿人。獲得多項中國和美國發明專利。   王

妍,女,生於1985年5月,上海理工大學工程熱物理碩士,在校期間主要研究方向電子熱設計,LED 燈的散熱分析等,曾就職于安世亞太上海分公司,從事熱設計軟體ANSYS Icepak的售前、售後技術支援等工作。現就職馬瑞利汽車零部件公司車燈產品的高級熱設計工程師。 譯者的話 致謝 題詞 第一章 我們不販賣空氣 我們的男主人公(作者) 發現他的新同事在產品設計需求中撰寫了一些工程傳說. 你是否應該測試實際的產品溫度. 或者是產品出口處的空氣溫度? 經驗: 所有熱問題的核心是元器件結溫. 第二章 每一個溫度都是一個故事 一個電阻燒掉時有多熱? 是否高於或低於焊錫的熔點? 實驗室

中總是傳說元器件燒毀或焊錫熔化. 但實際它們有多熱? 冰激淩的理想保存溫度是多少? 經驗: 在溫度尺規上做些標識. 第三章 環境控制不是那麼容易 Herbie瞭解到除非產品最終在恒溫箱內工作. 否則恒溫箱內進行產品測試並不好. 經驗: 自然與強迫對流. 熱失效. 第四章 金剛石是GAL 的摯友 通過閱讀有關描述環氧樹脂熱性能的文章可知. 它的熱性能要比普通環氧樹脂好50%. 但從熱傳導的角度而言. 它還是一個絕熱體. 經驗: 熱導率. 第五章 堅守底線 不要告訴PCB 設計工程師. 他設計的PCB 熱性能非常差. 他會將此設計作為唯一的可行設計. 經驗: 介紹CFD (計算流體動力學).

第六章 什麼時候是一個熱沉(散熱器)? 越來越多來自EE 世界的很多工程傳說談論鋁就像海綿一樣具有吸收熱量的魔法. 並且將熱量釋放到另一個世界. 經驗: 對流和表面積. 熱傳導. 第七章 權衡 電氣性能、成本和溫度三者需要權衡. 所以產品不能溫度太低. 經驗: 結溫工作限制. 第八章 恐懼症 全公司的人都害怕旋轉氣體加速裝置(風扇). 經驗: 風扇有著讓人們害怕它的缺陷. 所以在最開始的階段就要仔細考慮它. 第九章 間隙冷卻系統 一個系統的冷卻僅僅是因為主機殼內無意中設計的空氣縫隙. 如何預測一個冷卻系統的性能真的是門大學問. 經驗: 通過手算自然對流流動幾乎是不可能的. 第十章 

極限 自然對流有極限. 因為大自然不會面對很多競爭. 並且不會努力在流程方面進行改善. 但是電腦晶片正變得越來越熱. 經驗: 自然和強迫對流冷卻. 第十一章 保持頭腦冷靜 最大風量為25CFM 的風扇. 在系統中卻無法提供25CFM 的空氣流量. Herbie 對此感到疑惑不解. 我只好將風扇在系統中風量的估算圖表畫在餐巾紙背面. 供他參考. 經驗: 風扇性能曲線. 第十二章 易怒的樣機 電子元器件的冷卻與電源的冷卻存在一些差異. 與人體的冷卻差別更大. 為一個專案制定熱設計目標. 不僅僅只是填寫一份表格那麼簡單. 經驗: 工作溫度極限. 第十三章 錯誤資料 元器件的資料手冊上寫滿了各種

各樣的資料. 然而很多資料通常只在無關緊要的時刻才顯得有用. 就像我的測溫手錶. 只在氣溫暖和的時候才稍顯精准. 當戶外天氣很熱或是很冷的時候. 溫度讀數往往錯得離譜. 經驗: 用空氣溫度來定義元器件的工作溫度極限. 這個資料其實沒有多大用處. 第十四章 悲觀是品質工具 Herbie 和Vlad發現. 兩個風扇有時候並不比一個風扇涼快. 經驗: 兩個並排安裝的風扇. 並不是總能提供冗餘冷卻. 第十五章 風兒吹啊吹 傳熱學中的偽科學和誤解來自於哪裡呢? 應該是始於電視天氣預報和所謂的“寒風指數”. 經驗: 強制對流換熱方程. 第十六章 熱電偶:最簡單的測量溫度的方法,卻可能測出錯誤的資料

熱電偶是最可靠和最準確的測量溫度的方法. 然而. 如果你像Herbie 那樣使用熱電偶的話. 熱電偶也可能測出錯誤的資料. 經驗: 熱電偶有可能不能正常工作. 第十七章 CFD 圖片很漂亮 電腦模擬能夠在電子設備樣機出來之前預測其內部電子元器件的溫度. 並且可以達到較高的預測精度. 經驗: 需要更多關於計算流體動力學(CFD) 的知識.    第十八章 過猶不及 從雜誌上的照片看. 針狀鰭片散熱器似乎有更多的散熱面積.但是. 為什麼它的散熱性能沒有變得更好? 經驗: 強制對流只對平行氣流方向的散熱器面積起作用. 第十九章 電腦模擬軟體是測試設備嗎 除了做熱模擬的工程師之外. 沒有人會相信電

腦模擬結果.除了測試工程師本人. 大家都盲目地相信熱測試資料. 為什麼不將熱模擬結果和熱測試資料進行比較. 得出一個讓所有人都認可的結果呢? 經驗: 計算流體動力學(CFD) 可以解讀溫度測試資料. 第二十章 熱電三極 有關熱電偶的民間傳說和爭論: 熱電偶線的接頭應該焊接還是熔接呢? 如果你測量的方法不對. 採用焊接或熔接又有什麼關係呢. 經驗: 瞭解熱電偶的工作原理. 第二十一章 混亂的對流 自然對流和強制對流本來應該是朋友. 為什麼要讓它們互掐呢? 好在有芝加哥小熊隊[ 美國職業棒球大聯盟( MLB) 的一支 球隊] 的球迷參與其中. 出現自然對流和強制對流互掐的“球迷系統最終失敗.

經驗: 當自然對流和強制對流在相反的方向上工作時會出現什麼問題呢? 第二十二章 視情況而定 一個64引腳的元器件能夠散發多少瓦的熱量? 主機殼需要多大的通風孔? 從印製電路板焊接面散發的熱量占總熱量的百分比是多少? 這些常見的電子冷卻問題的答案都是“視情況而定”. 經驗: 元器件封裝功率限制及其局限性. 第二十三章 防曬霜是不是煙霧 大學的一項研究聲稱. 塗了防曬霜的皮膚比裸露的皮膚溫度要低20%. 即使是電子工程師也可以發現. 這個研究結論顯然是錯誤的. 經驗: 溫度不是一個絕對量. 第二十四章 70℃環境下比50℃環境下的測試結果低 在70℃環境和1000ft/min (5.08m/

s) 空氣流速下進行的熱測試比50℃環境和0ft/min空氣流速下的測試更嚴苛嗎? 並不總是 如此. 經驗: 對流換熱取決於空氣速度和溫差的組合. 而不僅僅是空氣溫度. 第二十五章 鍋裡的水終究會沸騰 實習生Roxanne沒有相信關於冷卻的傳統做法. 傳統的熱測試流程是: 啟動測試後等待1h. 然後記錄溫度資料. Roxanne沒有遵循這一傳統測試流程. 她一直等到溫度穩定在一個最大值時才開始記錄. 然後發現測試結果全變了. 經驗: 熱時間常數和瞬態對流. 第二十六章 最新的熱CD 當你發燒時. 護士有沒有給你的舌頭下面放一些冰. 然後再給你量量體溫. Herbie 想把散熱器只放在那個溫

度測量過熱的元器件上. 經驗: 一個複雜的裝配可能不僅僅是一個單一的工作溫度限值. 這個限值可能會在不同環境條件下改變. 第二十七章 什麼是1W 一個耗散1W熱量的元器件有多熱? 就像房地產一樣. 這取決於位置、位置、位置. 經驗: 對流+ 傳導= 耦合傳熱. 一個棘手的問題可以影響你的直覺.   第二十八章 熱阻神話 找到結溫是一切的關鍵. 但事實證明. 計算它的唯一方法是基於上古神話而不是物理公式. 就如柯克船長說的“ 事實上所有的傳說都有一些事實依據. 在更好的事物出現之前. 你只能堅信這個神話. 經驗: 傳導;結和外殼之間的熱阻定義。 第二十九章 熱電製冷器是熱的 電氣工程師喜歡

這些全電子化的製冷器.Herbie 提議在新系統中使用它們. 後來放棄了. 因為他瞭解到熱電製冷器不僅花費巨大. 而且它們還要求有風扇和散熱器. 並且會使元器件比不使用製冷器時更熱. 如果它們根據製造商宣傳的那樣進行工作. 為什麼它們還那麼糟糕? 經驗: 珀爾帖效應冷卻. 第三十章 紙牌屋 即便是專家也曾迷信一些神話. 深夜的懺悔顯示通過控制電子設備溫度來提高它們的性能和可靠性的方法並不像聲稱的那麼厲害. 希望不久的將來. 科技的進步能夠在不顛覆整件事情的情況下為這個“紙牌屋” 打下一個堅實的基礎. 為什麼沒有任何人擔心? 經驗: 電子設備的溫度和可靠性之間的關係沒有那麼科學. Herbi

e 的準備工作助手 如果我讓你對於熱交換和電子散熱或者是關於本書中的任何內容充滿興趣. 你可以從以下這些資料中找到更為詳細的說明.  

應用於功率元件之氮化鎵高電子遷移率電晶體的磊晶成長 與特性分析

為了解決led限流電阻位置的問題,作者戴進吉 這樣論述:

應用於功率元件且成長於矽基板上之氮化鎵高電子遷移率電晶體面臨高崩潰電壓、低操作電阻與低切斷電流等挑戰。本論文使用有機金屬化學氣相沉積成長氮化鎵高電子遷移率電晶體相關的異質結構於矽基板上,利用插入層的三維成長模式及緩衝層受體摻雜技術,來降低缺陷密度及補償施體雜質,改善典型的負型氮化鎵緩衝層,藉以提升氮化鎵功率元件的耐壓能力。進一步成長鎂摻雜的正型氮化鎵於不同鋁組成的結構,研究氮化鎵增強型功率元件的電洞活化濃度及鎂擴散問題,以解決低切斷電流問題。首先使用有機金屬化學氣相沉積技術在氮化鎵高電子遷移率電晶體結構中的氮化鎵緩衝層插入氮化矽,目的為減少氮化鎵緩衝層缺陷密度避免其對二維電子氣特性的影響。藉

由調控不同矽甲烷流量從0至100sccm,我們發現其壓縮應力及刃差排缺陷密度隨著矽甲烷流量增加而減少,同時可以增加二維電子氣的載子濃度。最佳化後,氮化鋁鎵/氮化鋁/氮化鎵形成之二維電子氣結構的電子特性可以達到高電子遷移率1970 cm2/V-s以及低片電阻值493.6 (Ω/sq)。進一步研究不同受體鐵摻雜濃度的氮化鎵緩衝層於矽基板上,定義鐵摻雜氮化鎵的飽和析出及三維成長濃度分別於1.7×1018 cm−3及5.0×1018 cm−3,再應用正型鐵三維成長技術於氮化鎵功率元件結構上,有效的達成減少缺陷密度及補償施體雜質目的。雖然鐵三維成長技術可以減少刃差排缺陷密度,但無法抑制鐵擴散現象,而垂直

崩壓的量測結果證明其於1000伏特偏壓下能有效改善垂直漏電流密度達一個數量級。最後研究成長在矽基板上的正型氮化鎵/氮化鋁鎵結構,在不同鎂摻雜濃度下之電洞活化率及光學性質。霍爾測量結果顯示鎂濃度在2.4×1019 cm−3的活化效率達到最大值2.22%。由於正型氮化鎵/氮化鋁鎵異質結構中存在應力,於鎂摻雜濃度過飽和後,沒有觀察到電洞濃度的反轉現象,這歸因於壓縮應變下限制了自我補償效應導致更多的鎂摻入鎵的位置。進一步成長正型氮化鎵/氮化鋁/氮化鋁鎵結構提升正型氮化鎵壓應力,可以在鎂摻雜濃度達到飽和後進一步提高活化效率,同時也可以有效抑制鎂原子的擴散,正型氮化鎵/氮化鋁/氮化鋁鎵結構可以實現約1.3

×1018 cm-3的高電洞濃度。