空氣黏滯係數計算的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

空氣黏滯係數計算的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦林唯耕寫的 電子構裝散熱理論與量測實驗之設計(二版) 和歐陽平凱,胡永紅,姚忠的 生物分離原理及技術(第3版)都 可以從中找到所需的評價。

另外網站阿基米德數百度百科- 黏滯係數單位 - frenzycrazex.com也說明:水的粘度可按下式計算: 式中,t為℃。 粘度也可通過實驗求得,如用粘度計測量。 水之黏滯係數η dyne sec/cm 液體之黏滯係數dyne sec/cm2,at 乙醚甘油石油黏滯係數空氣 ...

這兩本書分別來自清華大學 和化學工業所出版 。

元智大學 機械工程學系 江右君所指導 許允睿的 智慧廠房換氣效率模擬 (2021),提出空氣黏滯係數計算關鍵因素是什麼,來自於數值模擬、通風效率、熱對流、建築通風、空氣汙染防制。

而第二篇論文中原大學 化學工程學系 陳昱劭所指導 吳佳玲的 以超重力技術氣提非牛頓流體中的揮發性有機物 (2021),提出因為有 超重力、氣提、非牛頓流體的重點而找出了 空氣黏滯係數計算的解答。

最後網站大学物理实验(第2版) - Google 圖書結果則補充:用η′代替式(4)中的η,得式中,η是空气的黏滞系数,r是油滴的半径(由于表面张力的原因,油滴总是呈小 ... 但因为它处于修正项中,不需要十分精确,故它仍可以用式(4)计算。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了空氣黏滯係數計算,大家也想知道這些:

電子構裝散熱理論與量測實驗之設計(二版)

為了解決空氣黏滯係數計算的問題,作者林唯耕 這樣論述:

  林唯耕教授專業著作《電子構裝散熱理論與量測實驗之設計》於2020年全新改版,修正初版中的錯誤,並增加了全新的章節〈如何測量熱管、均溫板或石墨片的有效Keff值〉。   本書針對一般業界或專業領域人士所欲了解的部分提供詳盡介紹,至於一般熱交換器製造、鰭片設計等,由於坊間已有許多專業書籍,本書將不再贅文說明。本書第1章簡單介紹電子構裝散熱,特別是CPU散熱歷史的演變。第2章在必須應用到的熱傳重要基本觀念上做基礎的介紹,以便讓非工程領域的人亦能理解,了解熱之性質與物理行為後才能知道如何散熱,以及散熱之方法、工具、量測及理論公式。第3章旨在敘述流力的基本觀念,重要的是如何計算

壓力阻力,從壓力阻力才能算出空氣流量。第4章探討一般封裝IC後之接端溫度TJ之理論解法。第5章討論一些實例的工程解法,包括自然對流、強制對流下溫升之計算,簡介風扇及風扇定律、風扇性能曲線、鰭片之阻抗曲線,以及如何利用簡單的區域分割理論求取鰭片之阻力曲線。第6章至第9章則注重實務經驗,尤其是實驗設計,其中包括理論設計及實驗之技巧。第6章說明如何設計一個測量熱阻的測試裝置(Dummy heater)。第7章解說AMCA規範下之風洞設計如何測量風扇性能曲線及Cooler系統(或鰭片)之阻抗曲線。第8章以熱管之理論與實務為主,逐一介紹其中重要之參數及標準性能,並說明量測之原理。第9章對LED散熱重要之

癥結做了觀念上的說明,注重於LED之內部積熱如何解決。二版新增的第10章則詳細敘述如何利用Angstrom方法量測熱管、均溫板、石墨片、石墨稀等物質之熱傳導係數K值。  

智慧廠房換氣效率模擬

為了解決空氣黏滯係數計算的問題,作者許允睿 這樣論述:

在作業環境當中,除了顯而易見的公安危險之外,人們容易忽略潛在的危險因子例如:空氣品質。良好的空氣品質除了能帶來舒適的工作環境更可以使汙染物遠離作業人員從而使作業人員遠離呼吸道疾病;智慧廠房長久以來都是以優良的加工能力著稱,但因其主建築建於較早,廠房設計為考量其加工環境是否會對作業人員帶來危害。本研究利用COMSOL Multiphysics®物理模擬以有限元素法解析架設風機對廠房內氣體流速變化,並觀測是否能為空氣品質帶來正影響;測量模型入口面積為1.98 (mm)^2、風機排風口面積1.2 〖mm〗^2並加入相對應邊界條件;氣體溫度為298.15 K、氣體壓力為101.325 kPa、氣體密

度為1.184 ????????/????3、氣體黏滯係數1.319 ×10^(-5)並加入實驗風機靜壓325 pa此邊界條件進行模擬、觀測。由模擬結果可知,風機能改變廠房內氣流變化,但在機台與機台之間因為間距太小導致氣體未能在之間流動,故整體通風效率雖有提升,但對其人體熱舒適度仍有進步的空間。架設風機之結果對於廠房二氧化碳濃度可從680 ppm降低至600 ppm左右,降低約12 %,故使作業環境之空氣品質能夠獲得改善。

生物分離原理及技術(第3版)

為了解決空氣黏滯係數計算的問題,作者歐陽平凱,胡永紅,姚忠 這樣論述:

修訂的教材將結合生物分離工程的發展以及專業人才培養的實際需要,以培養具有應用基礎性和工程性人才為目標,系統介紹生物分離原理及其應用。本教材保留了初版的基本構架和主要內容,兼顧了應用技術的廣泛性、新穎性、前沿性和實用性,除了對各種分離過程(過濾、離心與沉降、細胞破碎、萃取、吸附與離子交換、色譜分離、沉析、膜分離、結晶、乾燥及輔助操作)基本原理和方法進行全面介紹外,還注重基本概念的闡述、數學工具的應用及放大過程分析,這有助手引導讀者進一步系統、深入地學習和思考生物分離技術所涉及的科學問題。為了便幹讀者閱讀,本書仍然將生物分離的一般過程分為4個步驟,即不溶物的去除、產物粗分離、產物純化及產品精製,將

已有的和新近發展起來的新型分離技術進行了分類,以單元操作的方式逐一介紹,並列舉了大量實例,同時,每章前加思維導圖,便於讀者領會章節精華。 本書可作為高等院校相關專業本科生和研究生的專業課教材,也可作為教師和相關產業工程技術人員的參考書。技術,並重點介紹生物分離工程從原料預處理到產物精製整個技術過程的各個關鍵環節。 歐陽平凱,南京工業大學,教授院士。   歐陽平凱教授從1985年就已經對本校生物工程專業開始了《生物分離工程及裝備》的教學實踐,在英文教材《Bioseparations》的基礎上,開展了中英文雙語教學先後承擔了教育部《生物技術人才培養體系的探索與實踐》、江蘇省教

育廳《探索生物分離工程教學新模式》教改專案,並在日常教學工作中付諸實踐,取得了良好的效果,獲得全國模範教師稱號,1997年由歐陽平凱教授主編的《生物分離原理及技術》一書由化工出版社出版,並在本校生物工程、製藥工程等專業使用,教材內容詳盡、覆蓋面廣、信息量大、結構合理,具有工科專業特色,得到了學生及國內同行的廣泛好評。 1緒論/001 11生物分離工程的歷史及應用002 1.2生物分離與純化技術的研究內容及工藝特點003 1.2.1生物分離與純化技術的研究內容003 1.2.2生物分離與純化技術的工藝特點004 2過濾/005 2.1過濾的基本概念006 2.2關於過濾的一

般情況012 2.2.1不可壓縮濾餅012 2.2.2可壓縮濾餅013 2.3連續旋轉式真空抽濾機的操作原理015 2.3.1濾餅的形成015 2.3.2濾餅的洗滌015 2.4過濾的設備及其結構017 2.4.1過濾設備的分類017 2.4.2過濾設備的選擇018 2.4.3過濾介質018 2.4.4典型過濾設備的種類和結構019 習題023 3離心與沉降/025 3.1顆粒的沉降026 3.2重力沉降式固液分離設備028 3.2.1矩形水準流動池028 3.2.2圓形水準流動池029 3.2.3垂直流動式沉降池029 3.2.4斜板式沉降池030 3.3離心式沉降分離設備及其原理030

3.3.1管式離心機032 3.3.2碟片式離心機033 3.4離心分離過程的放大035 3.5離心過濾分離過程分析及其設備037 3.5.1離心過濾分離過程分析037 3.5.2離心過濾設備039 習題041 4細胞破碎/042 4.1細胞壁043 4.2化學破碎法044 4.2.1滲透衝擊法045 4.2.2增溶法045 4.2.3脂溶法046 4.3機械破碎047 4.4其他破碎方法049 習題050 5萃取/051 5.1萃取分離原理052 5.2單級萃取056 5.3多級逆流萃取過程058 5.4微分萃取操作060 5.4.1微分萃取設備簡介060 5.4.2微分萃取過程的解析計

算法061 5.5液-液萃取設備與流程063 5.6固體浸取065 5.6.1固體浸取的原理與計算065 5.6.2浸取設備067 5.7超臨界流體萃取069 5.7.1超臨界流體的性質070 5.7.2超臨界流體萃取過程072 5.7.3超臨界流體萃取的應用073 5.8雙水相萃取077 5.8.1雙水相萃取法概述077 5.8.2影響雙水相萃取的因素080 5.8.3雙水相萃取的應用083 5.9反膠團萃取086 5.10絡合萃取087 習題088 6吸附與離子交換/089 6.1吸附類型090 6.1.1物理吸附090 6.1.2化學吸附090 6.1.3交換吸附090 6.2常用吸附

劑091 6.2.1活性炭091 6.2.2活性炭纖維092 6.2.3球形炭化樹脂092 6.2.4大孔網狀聚合物吸附劑092 6.3吸附等溫線095 6.4影響吸附的因素096 6.4.1吸附劑的性質096 6.4.2吸附質的性質096 6.4.3溫度097 6.4.4溶液pH值097 6.4.5鹽的濃度097 6.4.6吸附物濃度與吸附劑用量097 6.5親和吸附098 6.5.1親和吸附原理098 6.5.2親和吸附的特點098 6.5.3親和吸附載體099 6.5.4影響吸附劑親和力的因素104 6.6間歇吸附106 6.7連續攪拌吸附107 6.8固定床吸附過程分析108 6.9離

子交換112 6.9.1離子交換的基本概念112 6.9.2離子交換樹脂的分類113 6.9.3離子交換樹脂的命名123 6.9.4離子交換樹脂的製備124 6.9.5離子交換樹脂的理化性能128 6.9.6離子交換過程理論131 6.9.7離子交換的選擇性138 6.9.8偶極離子吸附143 6.9.9離子交換操作方法144 6.9.10軟水與無鹽水的製備147 6.9.11離子交換提取蛋白質149 習題152 7膜分離/154 7.1概述155 7.2基本的膜分離過程156 7.3膜通量156 7.4滲透壓的計算157 7.5影響膜通量的主要因素160 7.6超濾162 7.6.1超濾膜

163 7.6.2超濾裝置167 7.6.3超濾過程分析171 7.6.4超濾的應用173 7.7反滲透174 7.7.1反滲透膜及其分離原理174 7.7.2影響反滲透膜分離性能的因素175 7.7.3反滲透的應用176 7.8納濾176 7.8.1納濾膜及其分離原理176 7.8.2影響納濾膜分離性能的因素177 7.8.3納濾的應用178 習題179 8沉析/180 8.1鹽析181 8.1.1鹽析原理181 8.1.2鹽析用鹽的選擇182 8.1.3影響鹽析的因素184 8.1.4鹽析操作185 8.2有機溶劑沉析186 8.2.1有機溶劑沉析原理186 8.2.2沉析溶劑的選擇18

7 8.2.3影響有機溶劑沉析的因素188 8.3等電點沉析法189 8.3.1等電點沉析原理189 8.3.2等電點沉析操作190 8.4其他沉析法190 8.4.1水溶性非離子型多聚物沉析劑190 8.4.2生成鹽類複合物的沉析劑191 8.4.3離子型表面活性劑192 8.4.4離子型多聚物沉析劑192 8.4.5氨基酸類沉析劑192 8.4.6分離核酸用沉析劑192 8.4.7分離黏多糖的沉析劑193 8.4.8選擇變性沉析法193 8.5大規模沉析193 8.5.1初步混合194 8.5.2起晶194 8.5.3擴散控制晶體生長階段194 8.5.4對流沉析195 8.5.5絮凝階段

196 習題198 9色譜分離法/199 9.1色譜分離法分類200 9.2色譜分離基本概念200 9.2.1分配係數201 9.2.2阻滯因數Rf202 9.2.3洗脫容積Ve202 9.2.4色譜法的塔板理論203 9.2.5色譜分離回收率和純度203 9.3吸附色譜法206 9.3.1吸附色譜法的基本原理206 9.3.2吸附劑207 9.3.3展開劑210 9.3.4應用舉例213 9.4分配色譜法213 9.4.1載體213 9.4.2分配色譜的展開劑選擇214 9.4.3應用舉例214 9.5離子交換色譜法214 9.5.1離子交換色譜法對樹脂的要求215 9.5.2應用舉例21

5 9.6凝膠色譜法216 9.6.1基本原理216 9.6.2凝膠色譜的特點216 9.6.3凝膠的結構和性質217 9.6.4應用舉例223 9.7紙色譜法224 9.7.1濾紙224 9.7.2展開劑224 9.7.3紙色譜操作方法225 9.8薄層色譜法226 9.8.1薄層色譜法的特點227 9.8.2薄層色譜法的操作228 9.9高壓液相色譜230 9.9.1高壓液相色譜分離方法的原理230 9.9.2製備性高壓液相色譜231 9.10蛋白質分離常用的色譜法232 9.10.1免疫親和色譜法232 9.10.2疏水作用色譜法233 9.10.3金屬螯合色譜法234 9.10.4共價

作用色譜法235 9.11柱色譜的工業放大236 9.11.1利用放大準則確定色譜柱的初始規格237 9.11.2凝膠排阻色譜的放大237 習題242 10結晶/243 10.1結晶過程的分析244 10.2過飽和溶液的形成245 10.2.1熱飽和溶液冷卻245 10.2.2部分溶劑蒸發246 10.2.3真空蒸發冷卻法246 10.2.4化學反應結晶方法246 10.2.5鹽析法246 10.3晶核的形成246 10.3.1臨界半徑及形核功247 10.3.2臨界半徑與過冷度248 10.3.3成核速率248 10.3.4工業起晶法249 10.3.5晶種控制250 10.4晶體的生長2

51 10.4.1晶體生長的擴散學說及速度251 10.4.2影響晶體生長速率的因素252 10.5晶體純度的計算253 10.6晶體大小分佈253 10.6.1晶體群體密度253 10.6.2連續結晶過程的晶群密度分佈254 10.6.3晶體大小255 10.7間歇結晶過程分析259 10.8提高晶體品質的方法261 10.8.1晶體大小261 10.8.2晶體形狀262 10.8.3晶體純度263 10.8.4晶體結塊263 10.8.5重結晶264 習題265 11乾燥/266 11.1乾燥的基本概念267 11.1.1乾燥操作的流程267 11.1.2物料內所含水分的種類267 11

.2乾燥過程分析269 11.2.1乾燥曲線269 11.2.2乾燥速率曲線269 11.2.3恒速乾燥階段270 11.2.4降速乾燥階段270 11.3乾燥過程基本計算270 11.3.1水分蒸發量271 11.3.2乾燥空氣用量的計算272 11.4乾燥的副作用274 11.5乾燥設備的分類與選擇原則275 11.5.1乾燥設備分類的目的275 11.5.2乾燥裝置的不同分類法275 11.5.3乾燥設備選擇的原則276 11.6乾燥設備278 11.6.1箱式乾燥設備278 11.6.2氣流乾燥設備279 11.6.3噴霧乾燥設備281 11.6.4流化床乾燥設備282 11.6.5紅

外線乾燥283 11.6.6微波乾燥283 11.6.7噴動床乾燥設備284 11.6.8冷凍乾燥器285 11.6.9適用於膏糊狀物料乾燥的設備287 12輔助操作/290 12.1水質及熱原的去除290 12.1.1水質與供水290 12.1.2熱原及其去除方法292 12.2溶劑回收294 12.3廢物處理294 12.4生物安全性295 參考文獻296

以超重力技術氣提非牛頓流體中的揮發性有機物

為了解決空氣黏滯係數計算的問題,作者吳佳玲 這樣論述:

旋轉填充床(rotating packed bed, RPB)是製程強化的設備之一,能利用離心力場產生比傳統填充塔高出幾百倍的質傳效率,是製程強化的關鍵。在文獻中有許多對於黏性流體在RPB中質傳係數影響的相關研究,但大部分都是針對牛頓流體進行探討,比較少針對非牛頓流體的質傳特性進行研究,因此本研究的目的在於探討非牛頓流體的質傳特性,使用旋轉填充床氣提羧甲基纖維素(Carboxymethyl Cellulose Sodium Salt, CMC)水溶液中的丙酮,探討RPB轉速、氣體流率、液體流率、CMC水溶液濃度對丙酮移除率(E)和總括氣膜質傳速率(KGa)的影響。 實驗結果顯示

,CMC水溶液的黏度會隨轉速增加而下降,尤其在1.0 wt% CMC時更明顯,轉速從500 rpm提升至2000 rpm時,黏度可降低約14% (20 cp)。在RPB氣提丙酮程序中,黏度對丙酮移除率和總括氣膜質傳速率的影響很小,且丙酮移除率和總括氣膜質傳速率不會隨著CMC濃度增加而下降。丙酮移除率隨轉速增加、氣體流率增加而上升,隨液體流率增加而下降,最佳丙酮移除率可達到62.38%,為0.6 wt% CMC在轉速2000 rpm,氣體流率70 NL/min,液體流率100 ml/min;總括氣膜質傳速率會隨轉速增加、氣體流率增加、液體流率增加而上升,最佳總括氣膜質傳速率可達到9.36 s-1

為0.6 wt% CMC在轉速2000 rpm,氣體流率70 NL/min,液體流率300 ml/min。 將KGa的實驗值與計算值比較後可以發現實驗值的KGa確實比填充塔的KGa計算值高很多,尤其是高黏度流體時,代表在高黏度流體下使用RPB進行氣提可以有更好的質傳效率。