DC DC 轉換器的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

DC DC 轉換器的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦楊善國 寫的 應用電子學(第二版)(精裝本) 和蔡明發的 電動機控制與模擬【附PSIM 9.0模擬檔案光碟】都 可以從中找到所需的評價。

另外網站DC-DC 9A 300W 直流降壓轉換器5-40v 到1.2-35v 功率模組8A ...也說明:DC -DC 9A 300W 直流降壓轉換器. 固定轉燈電流為恆流值的0.1倍(充電的時候用用於識別是否電池充滿);; 使用了專用的基準IC,和高精度的採樣電阻,使恆流更穩定,(20 ...

這兩本書分別來自全華圖書 和新文京所出版 。

明新科技大學 電機工程系碩士班 蘇信銘所指導 黃禎岳的 無橋式功因修正轉換器研製 (2021),提出DC DC 轉換器關鍵因素是什麼,來自於功率因數修正器、平均電流控制法、圖騰柱型功率因數修正器。

而第二篇論文國立臺北科技大學 電機工程系 胡國英、姚宇桐所指導 陳俊宇的 應用無橋式升降壓型功率因數修正器及LLC諧振式轉換器於USB電力傳輸 (2021),提出因為有 通用輸入、無橋式、升降壓型、高功率因數、LLC諧振式轉換器、USB電力傳輸的重點而找出了 DC DC 轉換器的解答。

最後網站DC/DC 轉換器; 24 VDC 輸入電壓- 859-802則補充:DC /DC 轉換器; 24 VDC 輸入電壓; 10 VDC 輸出電壓; 0.5 A 輸出電流; 2,50 mm²; 灰色(4050821083313) | WAGO TW.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了DC DC 轉換器,大家也想知道這些:

應用電子學(第二版)(精裝本)

為了解決DC DC 轉換器的問題,作者楊善國  這樣論述:

  作者依教學經驗及專業知識,並為兼顧學習內容及學習效果,本書由最基礎的半導體材料及PN接面開始講起,到雙層元件(二極體)、三層元件(電晶體)、四層元件(閘流體)、線性積體電路-OP,到常用的應用電路包括:運算放大器構成之應用電路、電壓調整器、主動濾波器、功率放大器等,使學生可習得電子元件及其構成電路的基礎知識。另修習本科目的學生可能來自不同的專業背景,對電學的觀念及基礎或有所不同,為顧及對電學較生疏學生的需要,特別增加「電學基本概念複習」一章(第零章),使學生具有起碼的電路基礎,以協助學生進入電子電路之領域,並助益往後的教學。    本書特色     1.本書由最基礎的半導體材料及PN接

面開始講起,到雙層元件(二極體)、三層元件(電晶體)、四層元件(閘流體)、線性積體電路-OP,到常用的應用電路,使學生可習得電子元件及其所構成電路的基礎知識。     2.修習本科目的學生可能來自不同的專業背景,對電學的觀念及基礎或有不同,特別增加「電學基本概念複習」,使學生具有基礎的電路概念,以協助學生進入電子電路之領域,並助益往後的教學。     3.本書適用大學、科大機械、自動化科系『應用電子學』、『電子學』課程使用。

DC DC 轉換器進入發燒排行的影片

這一次要來實測大家最好奇的充電砂輪機續航力到底有多久? 電動工具使用電池雖然方便好用,但是大功率的機種在長時間工作上總是續航力不太足夠,以前就有在想為什麼不出個電源轉換模組就好了呢? HiKOKI居然就有出這樣子的套件可以使用!

#HiKOKI#日立電動工具#ET36A#AC-DC電源轉換器

▼HiKOKI電動工具▼
【台灣總代理官網】https://bit.ly/3iaak82
【Facebook粉絲頁】 https://www.facebook.com/HikokipowertoolsTW

▼ 支持台灣設計製造或其他好產品 ▼
【職人工廠官方賣場】https://www.711l.co/
【職人工廠蝦皮賣場】https://shopee.tw/shop/14732572/search
【職人工廠FB】https://www.facebook.com/TezJustMake/

合作提案請洽[email protected]

▼ 不可錯過的工具新品 ▼
來自台灣的世界最小扭力組合!日常維修必備精品!SLOKY x 職人工廠
https://youtu.be/IjoC1RALyNc
棒棒糖也能做成工具?職人工廠設計一款不得了的工具了!?棒棒糖手工具
https://youtu.be/LkK28Y40fb8
2021年砂輪機未來新趨勢!從未體驗過的快速更換砂輪片系統!
https://youtu.be/GHSjMY-rbA8

無橋式功因修正轉換器研製

為了解決DC DC 轉換器的問題,作者黃禎岳 這樣論述:

本論文目的在研製一無橋式功因修正轉換器,硬體電路以圖騰柱型功率因數修正電路為核心,利用外迴路電壓感測電路與內迴路電流感測電路完成本控制。本研究採用平均電流控制法來實現功率因數修正功能。平均電流控制法以雙迴圈PI控制器來實現,由輸入電壓極性與波形角度傳給雙迴圈PI控制系統運算,外迴圈PI控制器控制電壓,內迴圈PI控制器控制電流,軟體是以瑞薩電子公司生產的R5F562TAADFP數位訊號處理器實現,經實測結果顯示功率因數可達0.98以上,總諧波失真率最大為11.644%。證明本控制器可達功率因數修正的效果。

電動機控制與模擬【附PSIM 9.0模擬檔案光碟】

為了解決DC DC 轉換器的問題,作者蔡明發 這樣論述:

  本書內容解說由淺入深,易讀易懂,全書分為六個單元,前面五個單元介紹各種馬達的旋轉原理、數學模型及其轉移函數方塊圖,並利用PSIM模擬軟體工具建構各種馬達的相變數模型,以仿真一個實際的馬達連接至變頻器功率電晶體電路,以便於利用該模擬軟體進行馬達特性的模擬分析。   電動機,即為馬達,應用非常廣泛,不僅許多家庭電器和工業應用產品都要使用馬達來驅動,需藉由馬達來驅動的電動車輛也將成為交通工具的主流。因此,學習馬達的工作原理與驅動技術對電機與相關科系的大專學生是相當重要的,電動機控制領域以基本物理運動力學與工程數學為基礎,概括電路學、電機機械、自動控制與電力電子學等科目的應用

,是一個整合性的課程。   作者累積二十餘年任教電動機控制與實務課程的教學心得與經驗,深諳學生學習需求,編寫成這本結合理論與實務的教科書,可作為大專院校電機、電子、機械暨其相關科系電動機控制課程的教材,亦可作為工程師與研究人員研發參考之用。   隨書附贈光碟內含各單元之PSIM(9.0 版)模擬檔案,讀者可對照附錄C之說明,對應書本進行運用。各章習題附QR Code提供讀者掃描下載觀看解答,方便自學讀者研讀。  

應用無橋式升降壓型功率因數修正器及LLC諧振式轉換器於USB電力傳輸

為了解決DC DC 轉換器的問題,作者陳俊宇 這樣論述:

摘 要 iABSTRACT ii致謝 iv目錄 v圖目錄 x表目錄 xxix第一章 緒論 11.1 研究動機及目的 11.2 研究方法 111.3 論文內容架構 12第二章 先前技術之動作原理與分析 132.1 前言 132.2 有橋式升降壓型功率因數修正電路架構與其動作原理 132.3 諧振式轉換器架構與特性 182.3.1 串聯諧振式轉換器 182.3.2 並聯諧振式轉換器 202.3.3 串並聯諧振式轉換器 222.4 USB Power Delivery 25第三章 所提無橋式升降壓型功率因數修正電路與LLC諧振式轉換器之動作原理與分析 263

.1 前言 263.2 電路符號定義及假設 263.3 所提電路之工作原理與數學分析 293.3.1 無橋式升降壓型功率因數修正電路之運作行為 303.3.2 無橋式升降壓型功率因數修正電路之電壓轉換比 333.3.3 無橋式升降壓型功率因數修正電路之電感電流邊界條件 353.3.4 無橋式升降壓型功率因數修正電路之實際電壓轉換比 373.3.5 LLC諧振轉換電路之運作行為 383.3.6 LLC之電壓增益 533.3.7 LLC電壓增益與K值關係 553.3.8 電壓增益與品質因素Q關係 57第四章 系統之硬體電路設計 584.1 前言 584.2 系統架構 5

84.3 架構之系統規格 604.4 系統設計 614.4.1 輸入端之差動濾波器設計 614.4.2 電感L1與電感L2設計 68(A) 電感L1與L2之感量 68(B) 電感L1與L2之磁芯選用 724.4.3 輸出電容Co1設計 754.4.5 模擬變載輸出電壓變動量量測 764.4.6 諧振槽參數設計 79(A) 變壓器Tr之匝數比n 79(B) 輸出等效阻抗Rac 79(C) 品質因數Q 80(D) 諧振元件Lr、Cr、Lm參數 84(E) 磁性元件Lm、Lr繞製 854.4.5 輸出電容Co2設計 924.4.6 同步整流器IC說明 934.4

.7 功率開關與二極體之選配 95(A) 升降壓型功率因數修正器之開關元件選配 96(B) LLC諧振式轉換器之開關元件選配 974.4.7 驅動電路設計 984.5 電壓偵測電路設計 994.6 元件總表 102第五章 軟體規劃及程式設計流程 1035.1 前言 1035.2 程式動作流程 1035.2.1 ADC取樣與資料處理 1045.2.2 移動均值濾波模組 1065.2.3 PI控制器模組與限制器模組 1085.2.4 控制開關訊號模組 110第六章 模擬與實作波形 1126.1 前言 1126.2 電路模擬結果 1126.2.1 電路於15W功率

等級之模擬波形圖 1146.2.2 電路於27W功率等級之模擬波形圖 1196.2.3 電路於45W功率等級之模擬波形圖 1246.2.4 電路於100W功率等級之模擬波形圖 1296.3 所提功率因數修正電路的實驗波形圖 1356.3.1 單級功率因數修正電路於16.6W功率等級之實驗波形圖 136(A) 輸入電壓85V之波形量測 136(B) 輸入電壓110V之波形量測 139(C) 輸入電壓220V之波形量測 142(D) 輸入電壓264V之波形量測 1456.3.2 單級功率因數修正電路於30W功率等級之實驗波形圖 148(A) 輸入電壓85V之波形量測 148

(B) 輸入電壓110V之波形量測 152(C) 輸入電壓220V之波形量測 155(D) 輸入電壓264V之波形量測 1586.3.3 單級功率因數修正電路於50W功率等級之實驗波形圖 161(A) 輸入電壓85V之波形量測 161(B) 輸入電壓110V之波形量測 164(C) 輸入電壓220V之波形量測 167(D) 輸入電壓264V之波形量測 1706.3.4 單級功率因數修正電路於111W功率等級之實驗波形圖 173(A) 輸入電壓85V之波形量測 173(B) 輸入電壓110V之波形量測 177(C) 輸入電壓220V之波形量測 181(D) 輸入電壓264

V之波形量測 1846.3.5 單級功率因數修正電路實驗波形比較結果之小結 188(A) 16.6W之功率等級 188(B) 30W之功率等級 189(C) 50W之功率等級 189(D) 100W之功率等級 1906.4 所採用之LLC諧振式電路的實驗波形圖 1926.4.1 單級LLC諧振式電路於15W功率等級之實驗波形圖 1926.4.2 單級LLC諧振式電路於27W功率等級之實驗波形圖 1966.4.3 單級LLC諧振式電路於45W功率等級之實驗波形圖 2016.4.4 單級LLC諧振式電路於100W功率等級之實驗波形圖 2056.5 所提電路之變載測試 211

6.5.1 系統於15W功率等級之變載實驗波形圖 2116.5.2 系統於27W功率等級之變載實驗波形圖 2206.5.3 系統於45W功率等級之變載實驗波形圖 2296.5.4 系統於100W功率等級之變載實驗波形圖 2386.6 實驗相關參數量測 2496.7 損失分析 253(1) 開關S1~S7之損失 253(2) 二極體D1、D2、D3之損失 255(3) 磁性元件之損失 255(5) 電容元件之損失 257(6) 損失分析總結 258第七章 文獻比較 260第八章 結論與未來展望 2628.1結論 2628.2 未來展望 262參考文獻 263符號彙

編 272