e hev充電的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

e hev充電的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(伊)詹弗蘭科·皮斯托亞寫的 鋰離子電池技術:研究進展與應用 和(美)雷迪的 電池手冊(第4版)都 可以從中找到所需的評價。

另外網站增程,你真的看懂了么?也說明:更极端的例子譬如日产的e-Power,虽然名为HEV,但内燃机完全不参与驱动,这就和我们现在看到的增程式的逻辑基本一致(主要区别是电池大小和是否允许充电) ...

這兩本書分別來自化學工業 和化學工業所出版 。

國立高雄科技大學 機械工程系 龐大成所指導 宋柏憲的 新型徑向磁通切換電動機研製 (2021),提出e hev充電關鍵因素是什麼,來自於徑向磁通切換電動機、單相電動機、二相電動機、無線驅動、拓樸優化方法、JMAG電磁分析軟體。

而第二篇論文國立虎尾科技大學 動力機械工程系機械與機電工程碩士班 唐聖億所指導 林敬凱的 歐姆累加演算法估測電池健康狀態之研究 (2020),提出因為有 電池健康狀態、鉛酸電池、鋰離子電池、電池內阻、變動式電流充電策略的重點而找出了 e hev充電的解答。

最後網站Honda Fit e:HEV試駕選汽油版的虧大了! | 8891汽車交易網則補充:而當鋰電池電量不足,引擎就會自動啟動,雖然官方是以Hybrid混合模式來溝通,不過這時候引擎是充當發電機的角色為電池充電,依舊是由馬達來提供動力,引擎 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了e hev充電,大家也想知道這些:

鋰離子電池技術:研究進展與應用

為了解決e hev充電的問題,作者(伊)詹弗蘭科·皮斯托亞 這樣論述:

本書共有25章,涵蓋了從材料到應用,再到回收等鋰離子電池相關的全部內容。書中詳細介紹了鋰離子電池正負極材料、電解液以及功能添加劑、隔膜等相關組件的研究背景,以及近些年來的研究進展和發展趨勢。並重點評述了將鋰離子電池應用於消費電子、電動汽車以及大型固定應用中時,如何實現不同的性能以及電子選項要求。本書還從原理上詳細分析了鋰離子電池的安全性以及回收等問題,並對鋰離子電池未來可用性以及發展趨勢進行了評估和說明。本書可作為鋰離子電池相關企業以及高校、科研院所相關科研人員的參考書籍,亦可作為新能源相關專業、材料相關專業等本科生以及研究生的教材。 第1章鋰離子電池的發展現狀以及最 新技

術趨勢0011.1概述0011.2實用型鋰離子電池的開發歷程0021.3陰極材料的發展現狀0041.3.1陰極材料的發展歷史0041.3.2陰極材料的最 新技術趨勢0051.3.3陰極材料的最新研究進展0051.4陽極材料發展現狀0071.4.1陽極材料的發展史0071.4.2陽極材料的最新研究進展0081.5電解液的發展現狀0091.5.1電解液的發展歷史0091.5.2電解液的最新研究進展0091.6隔膜技術0101.6.1隔膜制造方法及特征0101.6.2隔膜最新研究進展0121.7結論013參考文獻013第2章鋰離子電池的過去、現在與未來:新技術能否開啟新局面?0152.1概述0152

.2鋰離子電池是如何誕生的?0152.3消費者們期許的鋰離子電池性能0172.4鋰離子電池的性能改進0182.4.1錫基陽極0182.4.2硅基陽極0192.4.3鈦基陽極0192.4.4凝膠聚合物電解質鋰離子電池0202.4.5以LiFePO4為陰極的鋰離子電池0232.5新電池技術能否為鋰離子電池開啟新篇章?0242.5.1富鋰陰極0242.5.2有機陰極材料0242.5.3陶瓷包覆隔膜0262.6結論027參考文獻027第3章鋰離子電池和模塊快速充電(最高到6C)的電熱響應以及循環壽命測試0293.1概述0293.2基本注意事項和考慮要點0293.2.1快速充電意味着什麼?0293.2.

2快速充電功率要求0303.2.3對所有電池體系充電的一般方法0303.3不同鋰電池材料的快速充電特征0313.450A•h LTO電芯及模塊的快速充電測試0333.4.1電芯測試0333.4.2模塊測試036參考文獻040第4章鋰離子電池納米電極材料0414.1前言0414.2基於脫嵌機理的電極材料的納米效應0414.3正極納米結構磷酸金屬鋰材料0444.4負極鈦基納米材料0454.5轉換電極0464.6負極鋰合金0494.7納米結構碳用作負極活性材料0504.8碳基納米復合材料0534.9結論054參考文獻054第5章未來電動汽車和混合電動汽車體系對電池的要求及其潛在新功能0605.1概述

0605.2電池的功率性能分析0615.3汽車的基本性能設計0635.4熱分析和設計0655.5建立電池組體系0655.6鋰離子電池的高功率性能066參考文獻068第6章電動汽車電池制造成本0696.1概述0696.2性能與成本模型0706.2.1電芯和電池組設計類型0706.2.2性能建模0716.2.3成本建模0736.3影響價格的電池參數0756.3.1功率和能量0756.3.2電池化學成分0776.3.3電極厚度的限制0796.3.4可用荷電狀態以及使用壽命的相關注意事項0806.3.5電芯容量?並聯電芯結構0826.3.6電池組集成組件0826.4價格評估上的不確定性0836.4.1

材料和固定設備0846.4.2電極厚度0846.4.3電芯容量0846.4.4不確定性計算示例0856.5生產規模的影響0856.6展望086參考文獻087第7章電動汽車用鋰離子電池組0897.1概述0897.2鋰離子電池設計考慮的因素0907.3可充電能源儲存系統0927.3.1鋰離子電池單體電池0927.3.2機械結構0947.3.3電池管理系統和電子組件0957.3.4熱管理系統0977.4測試與分析0997.4.1分析工具1007.4.2標准化1007.5電動汽車可充電儲能系統的應用1007.5.1尼桑聆風(Nissan Leaf)1017.5.2雪佛蘭沃藍達(Chevrolet Vo

lt)1017.5.3福特福克斯(Ford Focus)BEV1027.5.4豐田普瑞斯PHEV1027.5.5三菱「I」1037.6結論103參考文獻104第8章Voltec系統——儲能以及電力推動1058.1概述1058.2電動汽車簡史1058.3增程序電動汽車1098.4Voltec推動系統1128.5Voltec驅動單元以及汽車運行模式1148.5.1驅動單元運行1148.5.2司機選擇模式1158.6電池經營策略1168.7開發及生效過程1188.8汽車場地經驗1198.9總結121參考文獻123第9章鋰離子電池應用於公共汽車:發展及展望1249.1概述1249.1.1背景和范圍12

49.1.2電力驅動在公交汽車中的配置趨勢1249.2在電力驅動公交汽車中整合鋰離子電池1269.3基於LIB充電儲能系統(RESS)的HEB/EB公共汽車1289.3.1使用鋰離子電池的公共汽車綜述1289.3.2FTA先進公共汽車示范與配置項目1329.4經驗積累、進展以及展望1359.4.1案例研究以及從LIB公共汽車運行中學習到的安全經驗1359.4.2LIB用於公共汽車市場:預測和展望136參考文獻140第10章采用鋰離子電池的電動汽車和混合電動汽車14410.1概述14410.1.1鋰離子電池的革新14410.1.2電動汽車分類14410.2HEVs14710.2.1奧迪O5混合電

動汽車(全混HEV)14710.2.2寶馬ActiveHybrid 3(全混HEV)14710.2.3寶馬ActiveHybrid 5(全混HEV)14710.2.4寶馬ActiveHybrid 7(輕混合EV)14810.2.5寶馬Concept Active Tourer(PHEV)14910.2.6寶馬i8(PHEV)15010.2.7本田(謳歌)NSX(PHEV)15110.2.8英菲尼迪EMERG?E(EREV)15110.2.9英菲尼迪M35h(全混EV)15210.2.10奔馳S400混動(輕混EV)15210.2.11奔馳E300 Blue TECHYBRID(全混EV)153

10.2.12奔馳Vision S500插電式混合電動汽車(PHEV)15310.2.13豐田Prius插電混合電動汽車(PHEV)15410.2.14豐田Prius+(全混EV)15510.2.15沃爾沃V60插電混合電動汽車(PHEV)15510.3BEVs和EREVs15710.3.1比亞迪e6(BEV)15710.3.2寶馬ActiveE(BEV)15710.3.3寶馬i3(EV&也可作為EREV)15810.3.4雪佛蘭Spark EV 2014(BEV)15810.3.5雪佛蘭Volt(EREV)15910.3.6雪鐵龍C—Zero(BEV)16010.3.7雪鐵龍電動Berlin

go(BEV)16010.3.8菲亞特500e(BEV)16210.3.9福特Focus EV(BEV)16210.3.10本田FIT EV(BEV)16210.3.11英菲尼迪LE概念車(BEV)16310.3.12Mini E(BEV)16410.3.13三菱i—MiEV(BEV)16410.3.14尼桑e—NV200(BEV)16410.3.15尼桑Leaf(BEV)16510.3.16歐寶Ampera(EREV)16510.3.17標致iOn(BEV)16510.3.18雷諾Fluence Z.E.(BEV)16710.3.19雷諾Kangoo Z.E.(BEV)16710.3.20雷

諾Zoe Z.E.(BEV)16810.3.21Smart Fortwo電動車(BEV)16810.3.22Smart ED Brabus(BEV)16910.3.23Smart Fortwo Rinspeed Dock+Go(BEV或EREV)16910.3.24特斯拉Roadster(BEV)16910.3.25豐田eQ(BEV)17010.3.26沃爾沃C30(BEV)17110.3.27Zic kandi(BEV)17110.4電動微型汽車17210.4.1Belumbury Dany(重型四輪)17210.4.2雷諾Twizy(輕型和重型四輪車)17210.4.3Tazzari Ze

ro(重型四輪車)17310.5城市運輸車輛新概念17310.5.1奧迪Urban Concept17310.5.2歐寶Rak—E17410.5.3PSAVELV17410.5.4大眾Nils17510.6結論175第11章PHEV電池設計面臨的挑戰以及電熱模型的機遇17711.1概述17711.2理論17811.3設置描述17911.4提取模型參數18011.4.1熱對流18011.4.2熱阻18311.4.3熱容18411.5結果和討論18511.5.1校准開發的模型18511.5.2確定開發的模型18811.5.3傳熱系數變化18911.6結論190附錄190參考文獻191第12章電動汽

車用固態鋰離子電池19412.1概述19412.1.1汽車發展環境19412.1.2汽車用可充電電池19412.1.3電動汽車和混合電動汽車的發展趨勢和相關問題19512.1.4對電動汽車用新型鋰離子電池的期望19612.2全固態鋰離子電池19612.2.1全固態鋰離子電池的優點19612.2.2Li+導電固態電解液19712.2.3全固態鋰離子電池的問題19912.2.4總結20512.3結論205參考文獻206第13章可再生能源儲能以及電網備用鋰離子電池20713.1概述20713.2應用20713.2.1與PV系統共享的住宅區電池儲能20713.2.2分布式電網中的季度電池儲能21013

.3系統概念和拓撲結構21213.3.1交流耦合PV電池系統21313.3.2直流耦合PV電池系統21313.4組件和需求21513.4.1電池系統21513.4.2電力電子21513.4.3能源管理系統21513.4.4通信設施21613.5結論217參考文獻217第14章衛星鋰離子電池21914.1概述21914.2衛星任務21914.2.1GEO衛星22014.2.2LEO衛星22114.2.3MEO/HEO衛星(中地球軌道或者高地球軌道)22214.3衛星用鋰離子電池22314.3.1主要產品規格22414.3.2資格鑒定計划22614.4衛星電池技術和供應商22814.4.1ABSL

22814.4.2三菱電氣公司23014.4.3Quallion公司23214.4.4Saft23714.5結論241參考文獻242第15章鋰離子電池管理24415.1概述24415.2電池組管理的結構和選擇24515.3電池管理功能24615.3.1性能管理24615.3.2保護功能24715.3.3輔助功能24815.3.4診斷功能24815.3.5通信功能24815.4電荷狀態控制器24815.4.1基於電壓估算SoC值24815.4.2基於電流估算SoC值(安時積分法)24915.4.3聯合基於電流與基於電壓的方法24915.4.4根據阻抗測試來估算SoC值25115.4.5基於模型的

方法251參考文獻253第16章鋰離子電池組電子選項25516.1概述25516.2基本功能25516.3監控25616.4測量25716.5計算25816.6通信25916.7控制26016.8單電芯鋰離子電池設備(3.6V)26116.8.1手機、平板電腦、音樂播放器和耳機26116.8.2工業、醫療及商業設備26316.9雙電芯串聯電池設備(7.2V)26316.9.1平板電腦、上網本和小型筆記本電腦26316.9.2車載電台、工業、醫療和商業設備26316.103~4個電芯串聯電池設備(一般10.8~14.4V)26416.10.1筆記本電腦26416.10.2工業、醫療和商業設備26

416.115~10電芯串聯電池設備26516.11.1電動工具、草坪和花園工具26516.11.2汽車SLI電池26616.1210~20電芯串聯電池26716.12.1電動自行車26816.12.248V通信系統及不間斷電源26816.13超大陣列電池系統26916.13.1汽車:混合動力及插電式混合動力汽車27016.13.2汽車:純電動汽車27016.13.3電網儲能和穩定系統27016.14結論270參考文獻271第17章商業鋰離子電池的安全性27217.1概述27217.2便攜式設備用商業鋰電池組27317.3商業鋰離子電池的局限性27317.4商業鋰離子電池的質量控制28117.

5商業鋰離子電池的安全認證過程28217.6結論284參考文獻285第18章鋰離子電池安全性28718.1概述28718.2系統層面的安全性28818.3電芯層面的安全性29018.4濫用耐受測試29118.4.1熱失控耐受以及熱穩定性測試29118.4.2電濫用耐受測試29218.4.3機械濫用耐受測試29318.4.4對可控內部短路測試的需求29418.5內部短路和熱失控29718.6大型電池及其安全性30118.7鋰沉積302參考文獻304第19章鋰離子電池組件及它們對大功率電池安全性的影響30619.1概述30619.2電解液30719.2.1控制SEI膜30719.2.2鋰鹽的安全問

題30819.2.3針對過充的保護措施30919.2.4阻燃劑30919.3隔膜31119.4陰極的熱穩定性31219.5Li4Ti5O12/LiFePO4:最 安全、最強大的組合31419.6其他影響安全性的參數31619.6.1設計31619.6.2電極工程31619.6.3電流限制自動復位裝置31719.7結束語317參考文獻318第20章鋰離子電池材料的熱穩定性32420.1概述32420.2電池安全的基本考慮32420.3電解液被負極化學還原32520.3.1石墨電極32520.3.2硅/鋰合金32720.4電解液的熱分解32820.4.1LiPF6/碳酸烷基酯混合溶劑電解液3282

0.4.2LiPF6/二氟乙酸甲酯電解液33020.5電解液在正極的氧化反應33320.5.1LiCoO233320.5.2FeF333420.6濫用測試的安全評估33520.6.1安全設備33620.7總結337參考文獻337第21章鋰離子電池的環境影響33921.1概述33921.2鋰離子電池回收的益處33921.3鋰離子電池環境影響34021.3.1電池組成34121.3.2電池材料供應鏈34221.3.3電池裝配34421.3.4電池對電動車輛生命周期環境影響的貢獻34521.4鋰離子電池回收技術概述及分析34721.4.1高溫冶金回收過程34721.4.2BIT回收過程34921.4

.3中間物理回收過程35021.4.4直接物理回收過程35121.4.5回收過程分析35121.5影響回收的因素35421.6總結355參考文獻356第22章回收動力電池作為未來可用鋰資源的機會與挑戰35822.1資源危機35822.2鋰儲備和鋰資源的地理分布36122.2.1鋰資源概述36122.2.2鋰儲量分布的特征36222.3未來電力汽車對鋰需求的影響36422.4目前不同研究中采用的回收額度綜述36622.5不同回收額度對鋰可用性的影響36822.6結論370參考文獻370第23章生產商、材料以及回收技術37423.1鋰離子電池生產商37423.1.1公司概述37423.2電池生產的

材料以及成本37823.3回收38023.3.1電池回收方面的法律條款、經濟和環境友好原則38023.3.2可充電電池回收過程38123.3.3一些電池回收的工業方法38223.3.4電池回收總述386參考文獻387第24章鋰離子電池產業鏈——現狀、趨勢以及影響38924.1概述38924.2鋰離子電池市場38924.3電池和材料生產過程39024.3.1當前成本結構39124.3.2中期成本結構以及利潤率39424.3.3長期成本結構(2015~2020年)39524.4產業鏈結構以及預期改變39624.4.1陰極和其他材料39624.4.2電池生產397參考文獻398第25章鋰離子電池熱力

學39925.1概述39925.2熱力學測量:程序和儀器40025.3老化前的熱力學數據:評估電池成分40125.4過充電池的熱力學40225.4.1概述40225.4.2過充老化方法40325.4.3放電特征40325.4.4OCP曲線40425.4.5熵和焓曲線40425.5熱老化電池的熱力學40825.5.1概述40825.5.2熱老化方法40825.5.3放電特征40825.5.4OCP曲線41025.5.5熵及焓曲線41025.6長時循環電池的熱力學41525.6.1概述41525.6.2老化方法41525.6.3放電特性41525.6.4OCP曲線41625.6.5熵及焓曲線416

25.7熱力學記憶效應42025.8結論422參考文獻424索引427

新型徑向磁通切換電動機研製

為了解決e hev充電的問題,作者宋柏憲 這樣論述:

本研究目的為開發一新型單相永磁式及二相電磁式徑向磁通切換電動機,兩者電動機皆採用定子4極及轉子2極設計,二相電動機具有結構簡單及組裝容易的優勢,單相電動機使用永久磁鐵,僅需一電源輸入驅動。單相電動機若搭配無線充電模組進行非接觸驅動旋轉,未來可應用於無需電線連結的流體或真空環境中,例如沉水幫浦、真空用載台馬達。本研究之單相及二相磁通切換電動機堆疊長度為5 mm,定子外徑為8 mm,氣隙為0.2 mm,轉子為外徑4 mm之非對稱型設計。二相電動機則透過直流激磁繞組提供恆定磁通,單相電動機透過四顆永久磁鐵提供恆定的磁通,具有二相電動機的扭矩特性,兩者皆使用交流電樞繞組進行磁通的切換,透過JMAG電

磁分析軟體搭配拓樸優化方法改善轉子設計,以達到高輸出扭矩及低扭矩漣波。本論文完成二相電磁式徑向磁通切換電動機製作及測試,進行扭矩-角度曲線、反電動勢、啟動扭矩及軸心偏擺之量測。根據實驗測試結果,在1 A激磁電流輸入時,電動機的啟動扭矩為163.96 μN-m,最高轉速為14,000 RPM,並驗證了本研究電動機之理論模型。單相永磁式磁通切換電動機目前僅完成設計及電磁分析,由於製作完成之永久磁鐵特性與理論分析不同,有待未來改善,再進行實體製作及測試。

電池手冊(第4版)

為了解決e hev充電的問題,作者(美)雷迪 這樣論述:

由美國一大批知名電池專家撰寫的電池專着,先后已經出版了第一版至第三版和目前最新的第四版。第四版《電池手冊》為適應電池技術發展和電動車及大規模儲能等新的應用需求,在對傳統電池體系部分全面進行修訂的基礎上,新增和補充了鋰離子電池、燃料電池和電化學電容器、動力電池、儲能電池、消費電子產品的電池選擇、生物醫學用電池、軍用貯備電池、數學模型、故障分析等內容,列舉了各種電池新產品、相關性能及應用情況。第四版《電池手冊》共分5個部分,共39章。全書不僅覆蓋了前三版內容,而且介紹了最新電池技術。本手冊具有內容豐富、新穎性和實用強的特點。本書可以作為我國從事電池研究、生產和使用的廣大科技人員、工程技術人員極具價

值的參考書和工具書,同時也可作為各類中、高等院校及電化學及新能源材料專業師生的有益參考書。 第1部分工作原理 第1章基本概念2 1.1電池和電池組的組成2 1.2電池和電池組的分類3 121原電池和原電池組3 122蓄電池和蓄電池組3 123貯備電池4 124燃料電池4 1.3電池工作5 131放電5 132充電5 133具體實例:鎘/鎳電池6 134燃料電池6 1.4電池的理論電壓、容量和能量7 141自由能7 142理論電壓7 143理論容量7 144理論能量11 1.5實際電池組的比能量和體積比能量11 1.6質量比能量和體積比能量上限13 參考文獻14 第2章電化學

原理和反應15 2.1引言15 2.2熱力學基礎17 2.3電極過程18 2.4雙電層電容和離子吸附22 2.5電極表面的物質傳輸25 251濃差極化26 252多孔電極27 2.6電分析技術27 261循環伏安法27 262計時電位法30 263電化學阻抗譜法32 264間歇滴定技術34 265相圖的熱力學分析37 266電極38 參考文獻39 第3章影響電池性能的因素41 3.1概述41 3.2影響電池性能的因素41 321電壓水准41 322放電電流42 323放電模式44 324不同放電模式下電池性能評估實例46 325放電期間電池的溫度46 326使用壽命48 327放電類型49 3

28電池循環工作制度49 329電壓穩定性51 3210充電電壓52 3211電池和電池組設計52 3212電池老化與貯存條件55 3213電池設計的影響56 參考文獻56 第4章電池標准57 4.1概述57 4.2國際標准59 4.3標准概念60 4.4IEC和ANSI命名法60 441原電池60 442蓄電池62 4.5極端62 4.6電性能63 4.7標識64 4.8ANSI和IEC標准的對照表64 4.9IEC標准圓形原電池65 4.10標准SLI和其他鉛酸蓄電池66 4.11法規與安全性標准74 參考文獻75 第5章電池組設計76 5.1概述76 5.2消除潛在安全問題的設計76 5

21對原電池充電77 522防止電池組短路78 523反極78 524單體電池和電池組外部充電保護79 525設計鋰原電池組需要考慮的特殊事項80 5.3分立電池組的安全措施81 531防止電池組插入錯誤的設計81 532電池尺寸82 5.4電池組構造83 541單體電池間的連接83 542電池封裝84 543殼體設計84 544極柱和觸點材料86 5.5可充電電池組設計86 551充電控制87 552放電/充電控制事例88 553鋰離子電池88 5.6電能管理和控制系統89 參考文獻92 第6章電池數學模型94 6.1概述94 6.2電池數學模型的建立96 6.3經驗模型97 6.4機理模型

100 641電子電荷傳遞101 642離子電荷傳遞101 643界面上電荷轉移的驅動力102 644電荷傳遞速率102 645離子分布103 6.5釩酸銀電池的動力學模型104 6.6多孔電極模型105 6.7鉛酸電池模型106 6.8多孔電極的嵌入反應108 6.9能量平衡109 6.10電池容量衰減111 6.11確定正確模型114 參考文獻114 第7章電解質116 7.1概述116 7.2水溶液電解質116 721鹼性電解質117 722中性電解質119 723酸性電解質119 7.3非水電解質120 731有機溶劑電解質120 732無機溶劑電解質122 7.4離子液體122 7.

5固體聚合物電解質123 7.6陶瓷/玻璃電解質123 參考文獻124 第2部分原電池 第8章原電池概論128 8.1原電池的共性和應用128 8.2原電池的種類和特性129 8.3原電池系列的工作特性比較132 831概述132 832電壓和放電曲線135 833比能量和比功率136 834有代表性的原電池的性能比較137 835放電負載及循環制度的影響138 836溫度的影響138 837原電池的貯存壽命139 838成本140 8.4原電池的再充電141 第9章鋅/碳電池142 9.1概述142 9.2化學原理144 9.3電池和電池組類型145 931勒克郎謝電池146 932氯化鋅電

池146 9.4結構146 941圓柱形電池結構147 942反極式圓柱形電池148 943疊層電池和電池組148 944特殊設計149 9.5電池組成149 951鋅149 952碳包150 953二氧化錳150 954炭黑150 955電解質151 956緩蝕劑151 957碳棒152 958隔膜152 959密封153 9510外套153 9511端子153 9.6性能153 961電壓153 962放電特性155 963間歇放電的影響155 964放電曲線比較——高負載下尺寸對氯化鋅電池的影響157 965不同電池等級放電曲線比較158 966內阻161 967溫度的影響163 968

使用壽命164 969貯存壽命164 9.7特殊設計166 9.8單體及組合電池的型號及尺寸167 參考文獻171 第10章鎂電池和鋁電池172 10.1概述172 10.2化學原理173 10.3鎂/二氧化錳電池結構174 1031標准結構174 1032內?外「反極」式結構175 10.4鎂/二氧化錳電池的工作特性175 1041放電性能175 1042貯存壽命177 1043內?外「反極」式電池178 1044電池設計179 10.5鎂/二氧化錳電池的尺寸和類型179 10.6其他類型鎂電池179 10.7鋁原電池180 參考文獻180 第11章鹼性二氧化錳電池182 11.1概述182

11.2化學原理184 11.3電池組成和材料187 1131正極的組成187 1132負極的組成188 11.4結構190 1141圓柱結構190 1142小型電池結構191 1143電池的型號和尺寸192 1144測試標准192 1145電池漏液193 11.5EVOLTATM和OXYRIDETM電池194 參考文獻194 第12章氧化汞電池196 12.1概述196 12.2化學原理197 12.3電池組成197 1231電解質197 1232鋅負極198 1233鎘負極198 1234氧化汞正極198 1235結構材料199 12.4結構199 1241扣式電池結構199 1242平

板式電池結構200 1243圓柱形電池結構200 1244卷繞式負極電池結構200 1245低電流放電電池結構200 12.5鋅/氧化汞電池的工作特性201 1251電壓201 1252放電性能201 1253溫度的影響202 1254內阻202 1255貯存202 1256使用壽命203 12.6鎘/氧化汞電池的工作特性203 1261放電203 1262貯存204 參考文獻204 第13章鋅/氧化銀電池和鋅/空氣電池206 13.1鋅/氧化銀電池206 1311概述206 1312化學原理與組成206 1313電池結構213 1314工作特性213 1315電池尺寸和型號216 13.2鋅

/空氣電池217 1321概述217 1322化學原理218 1323結構219 1324工作特性221 參考文獻233 參考書目234 第14章鋰原電池235 141概述235 1411鋰電池的優點235 1412鋰原電池的分類236 142化學原理237 1421鋰237 1422正極活性物質238 1423電解質240 1424電池電極對和反應機理241 143鋰原電池的特性241 1431設計和工作特性概述241 1432可溶性正極的鋰原電池241 1433固體正極鋰原電池245 144鋰電池的安全和操作247 1441影響到安全和操作的因素247 1442需要考慮的安全事項247 1

45鋰/二氧化硫電池248 1451化學原理248 1452結構250 1453性能250 1454電池型號和尺寸254 1455Li/SO2電池和電池組的安全使用及操作事項254 1456應用255 146鋰/亞硫酰氯電池256 1461化學原理256 1462碳包式圓柱形電池257 1463螺旋卷繞式圓柱形電池261 1464扁形或盤形Li/SOCl2電池262 1465大型方形Li/SOCl2電池264 1466應用266 147鋰/氯氧化物電池268 1471鋰/硫酰氯電池268 1472鹵素添加劑鋰/氯氧化物電池268 148鋰/二氧化錳電池271 1481化學原理271 1482結

構271 1483性能273 1484單體電池和電池組的尺寸280 1485應用和操作283 149鋰/氟化碳電池284 1491化學原理285 1492結構285 1493性能285 1494單體和組合電池型號288 1495應用和操作291 1496鋰/氟化碳電池技術的研究進展291 1410鋰/二硫化鐵電池293 14101化學原理293 14102結構294 14103性能295 14104電池型號與應用298 1411鋰/氧化銅電池298 14111化學原理299 14112結構299 14113性能300 14114電池型號與應用302 1412鋰/銀釩氧電池303 1413鋰/水

電池和鋰/空氣電池303 參考文獻303 第3部分蓄電池 第15章蓄電池導論308 151蓄電池的應用與特點308 152蓄電池的種類和特點310 1521鉛酸蓄電池310 1522鹼性蓄電池311 153各種蓄電池體系的性能比較312 1531概述312 1532電壓和放電曲線316 1533放電速率對電性能的影響317 1534溫度的影響318 1535荷電保持319 1536壽命320 1537充電特性320 1538成本322 參考文獻323 第16章鉛酸電池324 161一般特征324 1611歷史327 1612生產統計和鉛酸電池的使用328 162化學原理330 1621一般特征

330 1622開路電壓特征333 1623極化和歐姆損耗333 1624自放電334 1625硫酸的特點和性質334 163結構特征、材料和生產方法337 1631合金生產337 1632板柵生產339 1633鉛粉生產344 1634和膏345 1635塗膏345 1636固化347 1637組裝和隔板材料347 1638殼蓋密封350 1639槽化成350 16310電池化成351 16311干荷電351 16312測試和完成352 16313運輸352 16314干荷電電池的激活352 164SLI(汽車)電池:結構和特征352 1641一般特征352 1642結構353 1643性能

特征354 1644單電池和電池組型號、尺寸359 165深循環和牽引電池:結構和性能359 1651結構359 1652性能特征360 1653電池型號和尺寸363 166備用電池:結構和特征365 1661結構365 1662性能特征367 1663單電池及電池組型號和尺寸372 167充電和充電設備373 1671通常考慮的因素373 1672鉛酸電池充電方法375 168維護、安全和運行特征378 1681維護378 1682安全380 1683工作參數對電池壽命的影響381 1684失效模式382 169應用和市場383 1691汽車電池383 1692小型密封鉛酸蓄電池384 16

93工業電池385 1694電動汽車385 1695儲能系統385 1696功率調節和不間斷電源系統386 1697船艇電池387 參考文獻387 第17章閥控鉛酸電池390 171概述390 172化學原理392 173電池結構392 1731VRLA圓柱形電池結構392 1732VRLA方形電池結構393 1733高功率電池設計395 174性能特征396 1741VRLA圓柱形電池特征396 1742VRLA方形電池特征403 1743高倍率部分荷電狀態下循環使用的新型電池設計405 175充電特征406 1751一般考慮406 1752恆壓充電406 1753快速充電407 1754浮

充電409 1755恆電流充電410 1756漸減電流充電411 1757並聯/串聯充電412 1758充電電流效率412 176安全與操作413 1761析氣413 1762短路413 177電池型號和尺寸414 178VRLA電池應用於不間斷供電電源416 179閥控鉛酸蓄電池目前的研究進展和未來機遇418 參考文獻418 第18章鐵電極電池419 18.1概述419 18.2鐵/氧化鎳電池的化學原理420 18.3傳統鐵/氧化鎳電池421 1831結構421 1832鐵/氧化鎳電池的特性423 1833鐵/氧化鎳電池的規格426 1834鐵/氧化鎳電池的操作和使用427 18.4先進鐵/

鎳電池427 18.5鐵/空氣電池430 18.6鐵/銀電池432 18.7鐵負極材料的新進展435 18.8鐵正極材料435 參考文獻437 第19章工業和空間用鎘/鎳電池439 19.1前言439 19.2化學原理441 19.3結構441 19.4特性443 1941體積比能量和質量比能量443 1942放電特性444 1943內阻444 1944荷電保持444 1945壽命446 1946機械強度和熱穩定性446 1947記憶效應447 19.5充電特性447 19.6密封鎘/鎳電池技術447 19.7纖維鎘/鎳電池技術448 1971電極技術448 1972生產靈活性449 1973

密封電池和開口電池449 1974密封免維護FNC電池449 1975性能451 19.8制造商和市場划分453 19.9應用454 參考文獻455 第20章開口燒結式鎘/鎳電池456 20.1概述456 20.2化學原理457 20.3結構458 2031極板及其制造工藝458 2032隔膜459 2033極組裝配459 2034電解質459 2035電池殼460 2036氣塞和單向閥460 20.4特性460 2041放電特性460 2042影響容量的因素460 2043變負載發動機啟動應用中的功率462 2044影響最大功率電流的因素462 2045比能量與比功率463 2046工作時間

463 2047荷電保持463 2048貯存465 2049壽命465 20.5充電特性465 2051恆電位充電466 2052恆電流控壓充電466 2053其他充電方法466 2054充電電壓的溫度補償467 20.6維護468 2061電性能恢復468 2062機械維護469 2063系統檢測標准469 20.7可靠性470 2071失效模式470 2072記憶效應470 2073影響氣體阻擋層失效的因素470 2074熱失控471 2075潛在危險471 20.8電池和電池組設計472 2081典型的開口燒結式鎘/鎳單體電池472 2082典型的電池組設計473 2083空冷/加熱47

4 2084溫度傳感器474 2085電池殼475 2086電池極柱475 2087電池加熱器475 2088開口燒結式鎘/鎳電池的發展475 參考文獻475 第21章便攜式密封鎘/鎳電池477 21.1概述477 21.2化學原理478 21.3結構479 2131圓柱形電池479 2132扣式電池479 2133小矩形電池480 2134矩形電池480 21.4特性480 2141概述480 2142放電特性480 2143溫度的影響481 2144內阻482 2145工作時間483 2146反極484 2147放電模式484 2148恆功率放電485 2149貯存壽命(容量或荷電保持)4

85 21410循環壽命485 21411壽命估算和失效機理486 21.5充電特性488 2151概述488 2152充電過程489 2153電壓、溫度和壓力的關系489 2154充電期間的電壓特性490 2155充電方法491 21.6特殊用途電池492 2161高能電池492 2162快充電電池493 2163高溫電池493 2164耐熱電池494 2165存儲器備份電池494 2166小矩形電池494 21.7電池類型和型號496 21.8電池尺寸及可能性498 參考文獻498 參考書目498 第22章金屬氫化物/鎳電池499 22.1概述500 22.2Ni/MH電池化學體系500

2221化學反應500 2222金屬氫化物合金501 2223氫氧化鎳503 2224電解質506 2225隔膜506 22.3電池結構類型507 2231圓柱形結構507 2232扣式結構507 2233小方形結構507 22349V多單體電池508 2235大方形電池508 2236整體結構508 22.4電池設計510 2241圓柱形結構與方形結構510 2242金屬殼與塑料殼511 2243能量與功率的平衡511 2244單體電池、電池模塊和電池組的設計512 2245熱管理水冷與風冷512 22.5EV電池組512 22.6HEV電池組514 2261HEV種類514 2262電損耗

515 2263荷電狀態保持515 22.7燃料電池的啟動和動力輔助515 22.8消費類電池——預充Ni/MH電池516 22.9放電特性517 2291概述517 2292放電特性518 2293質量比能量519 2294比功率519 2295放電速率和溫度對容量的影響520 2296工作壽命(工作時間)522 2297荷電保持能力523 2298循環壽命524 2299擱置壽命526 22910庫侖/能量效率和內阻526 22911過放電過程中的反極527 22912放電類型528 22913恆功率放電特性528 22914電壓降(記憶效應)528 22.10充電方法530 22101概

述530 22102充電控制技術532 22103充電方法533 22104再生制動能535 22105充電算法535 22.11電絕緣536 22.12下一代Ni/MH電池536 22121降低成本536 22122超高功率設計537 22123儲能電池538 參考文獻538 第23章鋅/鎳電池540 23.1概述540 23.2鋅/鎳電池化學原理541 2321鋅電極542 2322配對鎳電極的考慮543 2323隔膜544 2324正極545 23.3電池單體結構545 2331方形結構545 2332密封圓柱結構546 2333鎳電極547 2334鋅電極548 2335隔膜與電解質設

計548 23.4性能特征549 2341貯存特性553 2342安全性553 2343鋅/鎳單體電池和電池組554 2344失效機理556 23.5應用557 2351電動工具557 2352割草機和園藝工具557 2353輕型電動車558 2354混合電動車558 2355消費電子用AA電池559 23.6鋅/鎳電池的環境問題559 參考文獻560 第24章氫鎳電池562 24.1概述562 24.2化學反應562 2421正常工作563 2422過充電563 2423過放電563 2424自放電563 24.3電池與極組組件564 2431正極(燒結式)564 2432氫電極565 24

33隔膜材料565 2434氣體擴散網565 24.4Ni/H2電池結構565 2441COMSATNi/H2電池566 2442空軍Ni/H2電池566 2443質量比能量與體積比能量568 24.5氫鎳電池組的設計569 24.6應用571 2461GEO應用571 2462LEO應用572 2463地面應用573 24.7性能特性574 2471電壓特性574 2472Ni/H2電池的自放電性能575 2473電解質濃度對容量的影響576 2474GEO性能577 2475LEO性能數據578 24.8先進設計578 2481IPVNi/H2電池的先進設計578 2482先進電池組設計理

念579 2483雙極性Ni/H2電池581 參考文獻581 參考書目583 第25章氧化銀電池584 25.1概述584 25.2化學原理586 2521電池反應586 2522正極反應586 25.3電池構造和組成586 2531銀電極587 2532鋅電極588 2533鎘電極588 2534鐵電極588 2535隔膜588 2536電池殼589 2537電解質和其他組件590 25.4性能590 2541性能和設計權衡590 2542鋅/氧化銀電池的放電特性591 2543鎘/銀電池的放電特性594 2544阻抗594 2545荷電保持能力595 2546循環壽命和濕壽命595 25.

5充電特性599 2551效率599 2552鋅/氧化銀電池599 2553鎘/氧化銀電池600 25.6單體類型和尺寸601 25.7需要特別注意的方面和處理方法602 25.8應用603 25.9最新進展605 參考文獻607 第26章鋰離子電池609 26.1概述609 26.2化學原理611 2621嵌入反應過程612 2622正極材料612 2623負極材料621 2624非水溶液鋰電解質633 2625電解質添加劑639 2626隔膜材料641 26.3電池結構642 2631卷繞式鋰離子電池的結構643 2632疊層鋰離子電池的結構644 2633「聚合物」鋰離子電池的結構645

26.4鋰離子電池特點與性能647 2641鋰離子電池的特點648 2642商品鋰離子電池的性能652 26.5安全特性667 2651充電電極材料與電解質之間的反應與溫度的依賴關系667 2652對鋰離子電池安全與設計的監管標准669 26.6結論與未來發展趨勢673 參考文獻673 第27章常溫鋰金屬二次電池678 27.1概述678 27.2化學原理680 2721負極680 2722正極682 2723電解質684 27.3金屬鋰二次電池的性質689 2731電化學體系689 2732選用有機液態電解質的電池689 2733聚合物電解質電池693 2734無機電解質電池695 27.

4結論699 參考文獻699 第28章可充電鹼性鋅/二氧化錳電池703 28.1概述703 28.2化學原理704 28.3結構705 28.4性能706 2841第一次循環放電706 2842循環706 2843不同型號電池的性能707 2844多單體並聯電池707 2845溫度影響709 2846貯存壽命709 28.5充電方法710 2851恆電壓充電710 2852恆電流充電711 2853脈沖充電711 2854溢流充電712 28.6單體電池和電池組型號713 參考文獻714 第4部分特殊電池體系 第29章電動汽車和混合電動車用電池718 29.1緒論718 2911電動汽車718

2912電動汽車推進的動力和能源721 2913電動汽車電池組系統724 2914電動汽車電池組的電子控制器724 2915電動汽車的熱管理725 2916電動汽車電池的汽車集成725 29.2電動汽車電池的性能目標726 29.3電動汽車電池728 29.4電動汽車的其他儲能技術733 29.5混合電動車734 29.6混合電動車的種類739 2961停車?起步(微型)型混合電動車740 2962助力混合電動車741 2963重型混合電動車744 2964輕型混合電動車744 2965插電式混合電動車745 29.7HEV電池性能需求比較747 29.8HEV電池的車輛集成748 29.9

其他HEV儲能技術755 參考文獻755 第30章儲能電池758 30.1概述:電網儲能758 30.2沿革760 3021抽水儲能760 3022沿革、標准化電力設施761 3023不受監管的市場環境761 30.3電池儲能:儲能系統如何創造價值762 3031快速備電763 3032區域控制與頻率響應后備763 3033商品電存儲765 3034變電系統穩定766 3035變電電壓調節766 3036輸電設施升級延遲767 3037配電設施升級延遲768 3038用戶電能管理768 3039可再生能源管理769 30310電源質量和可靠性769 30.4電池儲能系統里程碑772 3041新

月電聯盟(現為美國能源聯合會),BESS,北卡羅來納州772 3042南加利福尼亞愛迪生季諾電池存儲工程772 3043波多黎各電力權威(PREPA)電池系統773 3044金谷電器協會(GVEA)Fairbanks電池系統774 30.5固定式用途的先進電池技術774 3051β?Al2O3鈉高溫電池774 3052電化學體系描述776 3053鈉/硫體系電化學776 3054鈉/金屬氯化物體系電化學777 3055鈉/硫電池技術778 3056鈉/氯化鎳電池技術779 3057鈉/硫電池設計思路779 3058β?Al2O3鈉電池系統應用780 30.6液流電池784 3061鋅/溴液流電

池784 3062電化學體系描述785 3063性能786 3064采用鋅/溴電池的儲能裝置787 3065全釩液流電池789 3066采用全釩液流電池的儲能設備789 3067太平洋電力,猶他州城堡谷全釩液流電池(VRB)系統791 30.7結論791 參考文獻792 第31章生物醫學用電池796 31.1植入裝置用電池和需求796 3111植入式心臟起搏器796 3112植入式心臟復率除顫器797 3113植入式心臟同步化治療除顫器798 3114植入式心臟監護器799 3115心臟輔助和完全型人工心臟裝置799 3116神經刺激器800 3117臨床實驗800 31.2外部供電醫療裝置電

池的應用和需求801 3121外部給藥泵801 3122聽覺輔助裝置801 3123自動外部除顫器802 31.3安全因素803 3131一次電池的安全性803 3132二次電池的安全性804 3133運輸規則805 31.4可靠性805 3141失效模式和故障樹分析805 3142電池設計的質量鑒定806 3143非破壞性測試806 3144破壞性測試807 31.5生物醫學裝置用電池的特性808 3151鋰/碘電池808 3152鋰/亞硫酰氯電池810 3153鋰/氟化碳電池811 3154鋰/釩酸銀電池813 3155鋰/二氧化錳電池815 3156鋰/釩酸銀電池與鋰/氟化碳電池817

3157鋰離子電池819 3158鋅/空氣電池822 3159生物燃料電池823 參考文獻824 第32章消費電子產品的電池選擇829 32.1概述829 32.2電池選擇的要素829 32.3典型的便攜式應用830 32.4一次電池的種類和應用831 32.5二次電池的種類和應用832 32.6電池選擇的詳細標准836 3261一次電池和二次電池的對比836 3262電壓836 3263物理尺寸836 3264容量838 3265負載電流和曲線839 3266溫度需求839 3267擱置壽命840 3268充電840 3269安全和監管841 32610成本842 32.7決定和權衡843

3271減少可能的選項843 3272性能標准的權衡845 32.8規避電池選擇中的常見失策846 第33章金屬/空氣電池847 33.1概述847 33.2化學原理849 3321原理簡介849 3322空氣電極850 33.3鋅/空氣電池851 3331簡介851 3332便攜式鋅/空氣原電池851 3333工業鋅/空氣電池856 3334混合空氣/二氧化錳原電池859 3335鋅/空氣充電電池859 3336機械式充電鋅/空氣電池864 33.4鋁/空氣電池867 3341中性電解質鋁/空氣電池868 3342鹼性電解質中的鋁/空氣電池869 33.5鎂/空氣電池876 33.6鋰/空氣

電池877 3361背景877 3362陽極878 3363電解質和隔膜878 3364陰極879 3365電池設計及性能879 3366電池組設計883 3367鋰/水電池883 參考文獻886 第34章水激活鎂電池及鋅/銀貯備電池890 34.1水激活鎂電池890 3411概述890 3412化學原理891 3413水激活電池類型892 3414結構892 3415工作特性897 3416電池用途905 3417電池型號和尺寸907 34.2鋅/氧化銀貯備電池908 3421概述908 3422化學原理908 3423結構909 3424工作特性912 3425單體和電池組型號和尺寸915

3426特殊性能及維護917 3427成本917 參考文獻917 第35章軍用貯備電池919 35.1常溫鋰負極貯備電池919 3511概述919 3512化學原理919 3513結構921 3514工作特性928 3515應用932 35.2旋轉貯備電池932 3521概述932 3522化學原理932 3523設計依據933 3524工作特性936 參考文獻939 參考書目940 第36章熱電池941 36.1概述941 36.2熱電池電化學體系942 3621負極材料943 3622電解質943 3623正極材料944 3624焰火加熱材料944 3625激活方法945 3626絕緣、

隔熱材料945 36.3單體電池化學原理946 3631鋰/二硫化鐵體系946 3632鋰/二硫化鈷體系948 3633鈣/鉻酸鈣體系948 36.4單體電池結構949 3641杯式單體電池949 3642開放式單體電池949 3643片式單體電池950 36.5電堆結構設計951 36.6熱電池性能特征953 3661電壓變化范圍953 3662激活時間954 3663激活壽命954 3664涉及熱電池應用應注意的問題954 36.7熱電池檢測和監督955 36.8熱電池的新發展956 參考文獻956 參考書目957 第5部分燃料電池與電化學電容器 第37章燃料電池導論960 37.1概述9

60 37.2燃料電池的工作962 3721反應機理962 3722燃料電池的主要組件963 3723一般特性963 37.3千瓦以下燃料電池965 3731氫和富氫燃料965 3732電化學轉換966 3733工作溫度966 3734組件特性966 3735空氣自呼吸系統968 3736環境友好968 3737成本968 37.4千瓦以下燃料電池的創新設計:固體氧化物燃料電池968 參考文獻969 第38章小型燃料電池970 38.1概述970 38.2燃料電池技術分類971 38.3燃料電池電化學行為972 38.4電池堆結構973 38.5燃料選擇974 38.6燃料處理與貯存技術974

3861壓縮氫氣貯存974 3862間接貯氫技術974 3863燃料處理975 3864燃料處理技術976 3865氣體處理977 38.7系統集成要求977 3871燃料供應977 3872空氣供應978 3873水管理978 3874熱管理978 3875控制979 38.8硬件及特性979 3881PEM燃料電池979 3882固體氧化物燃料電池983 38.9預測984 參考文獻984 第39章電化學電容器985 39.1概述985 3911電化學電容器與電池的比較985 3912電化學電容器的能量貯存986 39.2化學與材料特性990 3921活性炭990 3922改良碳材料99

0 3923金屬氧化物991 3924集流體材料991 3925電解質991 39.3電容器行為特征992 3931小型碳/碳電容器(容量小於10F)992 3932大型碳/碳電容器(容量大於100F)993 3933采用先進材料的電容器特性及裝置設計994 39.4電化學電容器模型994 3941交流阻抗的等效電路994 3942數學模型997 3943混合電容器設計分析1000 39.5電化學電容器測試1001 3951測試過程概述1002 3952碳/碳電容器的測試1002 3953混合電容器和贗電容電容器的測試1007 39.6電容器和電池的成本及系統1010 3961電化學電容器和電

池的成本1010 3962電容器與電池相結合1011 3963模塊和壽命1013 3964單體平衡1014 參考文獻1016 第6部分附錄附錄A術語定義(英漢對照)1022 附錄B標准還原電位1032附錄C電池材料的電化學當量1033 附錄D標准符號和常數1035 附錄E換算系數1039附錄F文獻1049 附錄G電池失效分析方法學1052 參考文獻1078

歐姆累加演算法估測電池健康狀態之研究

為了解決e hev充電的問題,作者林敬凱 這樣論述:

近年來,二次電池應用於消費性產品、不斷電系統、儲能系統與電動車,因此,對於電池健康狀態(State of Health,SOH)管理變得非常重要。目前電池健康狀態大部分採用電池容量進行估測,以現在電池容量除以全新電池容量。該方法通常要讓電池完整充滿再放電至截止電壓,花上時間約數小時,因此,耗費時間較長才能估測出SOH。 本論文針對鉛酸電池與鋰離子電池進行實驗,建置一套電池SOH估測系統,該系統包含電池內阻量測系統、變動式電流充電策略與SOH演算法。電池內阻量測系統搭配變動式電流充電策略對兩款電池進行充放電,取得全新電池之內阻數據(Rbat_ new),接著電池進行數次標準充放電

(步驟1),並重複使用變動式電流充電策略記錄目前電池內阻之變化(Rbat _75%、Rbat_ 50%、Rbat _25%) (步驟2)。兩款電池重複上述(1)到(2)步驟直到電池老化至一定程度(Rbat _ aged)。 根據SOH演算法計算,各個電池內阻之數值形成一曲線,則曲線經由複合梯形法計算成面積,並從數個面積中取前三次的平均值作為估測電池健康狀態的參數。依序為全新電池的參數為Rbat_avg_new,經過BAPSOH¬_75%、BAPSOH¬_50%、BAPSOH¬_25%的電池老化程(Battery aging procedure,BAP)後,分別得到Rbat _avg_75

%、Rbat_ avg_50%、Rbat _avg_25%,電池完全老化的參數為Rbat _avg_ aged,最終,上述參數帶入演算法可得到電池的SOH。實驗結果顯示,兩款電池模擬實際情況,當電池隨著循環充放電老化,估測出SOH也逐漸降低,再以電池容量加以驗證,當SOH降低的同時,電池容量也相對下降,因此,驗證本文提出的電池SOH估測系統之可行性。