gp125引擎的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括價格和評價等資訊懶人包

gp125引擎的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦林茂雄寫的 牙材力:大師們的百寶箱 和何賓的 Xilinx Zynq-7000嵌入式系統設計與實現:基於Arm Cortex-A9雙核處理器和Vivado的設計方法(第二版)都 可以從中找到所需的評價。

另外網站[開箱] 光陽KYMCO GP 125 鼓剎機車也說明:機車出廠與貨物稅完稅照證。 保險卡(現在好像改成一張紙了)。 而要注意的事項大約有以下幾項:. 引擎 ...

這兩本書分別來自林茂雄 和電子工業所出版 。

國立臺灣師範大學 健康促進與衛生教育學系 施淑芳所指導 吳亭儀的 產婦新生兒照護之需求、搜尋電子健康資訊之行為,及其與醫護人員溝通之探索性研究 (2019),提出gp125引擎關鍵因素是什麼,來自於產婦、電子健康資訊搜尋行為、健康照護溝通。

而第二篇論文國立陽明大學 環境與職業衛生研究所 紀凱獻所指導 吳亞璇的 臺灣本土燃煤電廠及汽柴油車排放尾氣中細懸浮微粒組成特徵及吸入風險評估 (2019),提出因為有 細懸浮微粒、排放源、ISCST3、富集因子、汙染來源解析、終生致癌增量風險的重點而找出了 gp125引擎的解答。

最後網站摩托車雜誌Motorworld【451期】 - Google 圖書結果則補充:冠穩健耐操好夥伴 KYMCO GP125 七期鼓煞撐起台灣經濟的好夥伴軍◇ ◇較上代省力10% ... 單純耐看的車輛外型、簡單好上手的車輛配備、順暢穩健的引擎配置,讓 GP125 長期 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了gp125引擎,大家也想知道這些:

牙材力:大師們的百寶箱

為了解決gp125引擎的問題,作者林茂雄 這樣論述:

  Top 100 Plus 經典臨床牙科器材,142項臨床牙科珍珠;牙醫師、牙技師與牙材商溝通的橋梁。     ◎《牙材力:大師們的百寶箱》就是你的超能力──   ● 濃縮數千篇文獻的精華,快速提升你的《牙材力》     ● 牙醫學生、牙醫師、牙材廠商,每人必備牙材手冊   ● 牙科材料超速學習,一次搞懂牙材分類、選擇標準及臨床使用   ● 142 項牙科珍珠產品優缺點、臨床應用時機,與使用訣竅   ● 牙醫師、牙技師與牙材廠商共同的語彙、溝通的橋梁        材料學在牙醫科學研究範疇內更見其精髓,任何一項新產品的推出,都是一項挑戰!牙醫界近幾年

的突飛猛進,更容易考驗這項說法! 《牙材力:大師們的百寶箱》精選Top 100 Plus 經典臨床器材,根據分類順序排列方式,一一介紹每個產品的特點、臨床應用和操作訣竅,是學生的基本修煉,醫師的臨床寶鑑。

產婦新生兒照護之需求、搜尋電子健康資訊之行為,及其與醫護人員溝通之探索性研究

為了解決gp125引擎的問題,作者吳亭儀 這樣論述:

研究背景  隨著科技蓬勃發展,資訊透過網路及社群媒體迅速傳播,網路資訊已成為產婦最主要的健康資訊來源,醫護人員已不再是其健康資訊的唯一提供者。然而,目前國內外對於產婦如何運用網路健康資訊進行育兒照護決策,以及如何影響其健康照護溝通之研究仍付之闕如。研究目的  瞭解產婦對新生兒照護的需求、如何蒐集、分析、解讀,以及運用電子健康資訊,以及探討產婦電子健康資訊搜尋行為如何影響其與醫護人員之溝通與互動。研究方法  本研究於2019年8月至9月間於臺北市立聯合醫院和平婦幼院區產後護理之家邀請符合條件之22位產婦參與,共12位產婦接受訪談。研究人員將訪談錄音資料謄打成逐字稿並進行編碼分析,並且以主題方式

呈現研究結果。研究結果  本研究結果如下:(一)電子健康資訊搜尋行為:產婦最關注的是新生兒生長與發育狀況,而學習新生兒照護技巧亦是產婦們的重要需求。上網搜尋電子健康的原因包括產婦發現自身身體出現異常症狀、希望獲得其他產婦之實務經驗以及認為醫護人員提供的健康資訊不足。產婦搜尋皆使用Google搜尋引擎,視健康議題問題之類型以及對於資訊需求的迫切程度來選擇資訊搜尋管道之管道。(二)電子健康資訊搜尋行為與健康照護人員溝通:當電子資訊與醫護人員提供有出入時,產婦們大多願意與主動與醫護人員確認資訊正確性。多數產婦認為電子健康資訊搜尋行為對於其與醫護人員互動溝通是有正面的影響。不論何種資訊管道,對於醫護人

員提供之資訊仍較信任,親朋好友提供之資訊僅做為參考不會完全採信,而對社群媒體中所提供之資訊認同感不高。產婦偏好衛教訊息以電子方式傳遞較為方便,不論偏好何者,產婦皆重視「資訊保存之便利性」。結論與建議  產婦對於育兒照護資訊之需求不僅限於知識也包括技能。對於他人於網路分享或社群網站之訊息,產婦仍會注意資訊之正確性及依據自身的狀況決定是否採納。產婦對醫護人員之信任度較高,且多希望醫護人員能夠主動提供資訊,但認為電子訊搜尋有助於健康照護溝通。建議未來可依據懷孕前中後不同的需求提供一個更易操作及使用之整合性平台,提供實證科學之資訊及建議。

Xilinx Zynq-7000嵌入式系統設計與實現:基於Arm Cortex-A9雙核處理器和Vivado的設計方法(第二版)

為了解決gp125引擎的問題,作者何賓 這樣論述:

本書是作者在已經出版的《Xilinx Zynq-7000嵌入式系統設計與實現:基於ARM Cortex-A9雙核處理器和Vivado的設計方法》一書的基礎上進行修訂而成的。   本書新修訂後內容增加到30章。修訂後,本書的一大特色就是加入了Arm架構及分類、使用PetaLinux工具在Zynq-7000 SoC上搭建Ubuntu作業系統,以及在Ubuntu作業系統環境下搭建Python語言開發環境,並使用Python語言開發應用程式的內容。   本書修訂後。進一步降低了讀者學習Arm Cortex-A9嵌入式系統的門檻,並引入了在Zynq-7000 SoC上搭建Ubuntu作業系統的新方法。此

外,將流行的Python語言引入到Arm嵌入式系統中,進一步拓寬了在Arm嵌入式系統上開發應用程式的方法。 第1章 Zynq - 7000 SoC設計導論 1 1.1 全可程式設計片上系統基礎知識 1 1.1.1 全可程式設計片上系統的演進 1 1.1.2 SoC與MCU和CPU的比較 3 1.1.3 全可程式設計SoC誕生的背景 4 1.1.4 可程式設計SoC系統技術特點 5 1.1.5 全可程式設計片上系統中的處理器類型 5 1.2 Arm架構及分類 6 1.2.1 M - Profile 7 1.2.2 R - Profile 9 1.2.3 A - Profile

10 1.3 Zynq - 7000 SoC功能和結構 11 1.3.1 Zynq - 7000 SoC產品分類及資源 12 1.3.2 Zynq - 7000 SoC的功能 12 1.3.3 Zynq - 7000 SoC處理系統PS的構成 14 1.3.4 Zynq - 7000 SoC可程式設計邏輯PL的構成 19 1.3.5 Zynq - 7000 SoC內的互聯結構 20 1.3.6 Zynq - 7000 SoC的供電引腳 22 1.3.7 Zynq - 7000 SoC內MIO到EMIO的連接 23 1.3.8 Zynq - 7000 SoC內為PL分配的信號 28 1.4 Z

ynq - 7000 SoC在嵌入式系統中的優勢 30 1.4.1 使用PL實現軟體演算法 30 1.4.2 降低功耗 32 1.4.3 即時減負 33 1.4.4 可重配置計算 34 第2章 AMBA規範 35 2.1 AMBA規範及發展 35 2.1.1 AMBA 1 36 2.1.2 AMBA 2 36 2.1.3 AMBA 3 36 2.1.4 AMBA 4 37 2.1.5 AMBA 5 38 2.2 AMBA APB規範 40 2.2.1 AMBA APB寫傳輸 40 2.2.2 AMBA APB讀傳輸 42 2.2.3 AMBA APB錯誤回應 43 2.2.4 操作狀態 44

2.2.5 AMBA 3 APB信號 44 2.3 AMBA AHB規範 45 2.3.1 AMBA AHB結構 45 2.3.2 AMBA AHB操作 46 2.3.3 AMBA AHB傳輸類型 48 2.3.4 AMBA AHB猝發操作 50 2.3.5 AMBA AHB傳輸控制信號 53 2.3.6 AMBA AHB位址解碼 54 2.3.7 AMBA AHB從設備傳輸回應 55 2.3.8 AMBA AHB資料匯流排 58 2.3.9 AMBA AHB傳輸仲裁 59 2.3.10 AMBA AHB分割傳輸 64 2.3.11 AMBA AHB復位 67 2.3.12 關於AHB資料匯

流排的位元寬 67 2.3.13 AMBA AHB周邊設備 68 2.4 AMBA AXI4規範 69 2.4.1 AMBA AXI4概述 69 2.4.2 AMBA AXI4功能 70 2.4.3 AMBA AXI4互聯結構 78 2.4.4 AXI4 - Lite功能 79 2.4.5 AXI4 - Stream功能 80 第3章 Zynq - 7000系統公共資源及特性 83 3.1 時鐘子系統 83 3.1.1 時鐘子系統架構 83 3.1.2 CPU時鐘域 84 3.1.3 時鐘程式設計實例 86 3.1.4 時鐘子系統內的生成電路結構 87 3.2 復位子系統 91 3.2.1

重定子系統結構和層次 92 3.2.2 重定流程 93 3.2.3 復位的結果 94 第4章 Zynq調試和測試子系統 95 4.1 JTAG和DAP子系統 95 4.1.1 JTAG和DAP子系統功能 97 4.1.2 JTAG和DAP子系統I/O信號 99 4.1.3 程式設計模型 99 4.1.4 Arm DAP控制器 101 4.1.5 跟蹤埠介面單元(TPIU) 102 4.1.6 Xilinx TAP控制器 102 4.2 CoreSight系統結構及功能 103 4.2.1 CoreSight結構概述 103 4.2.2 CoreSight系統功能 104 第5章 Corte

x - A9處理器及指令集 107 5.1 應用處理單元概述 107 5.1.1 基本功能 107 5.1.2 系統級視圖 108 5.2 Cortex - A9處理器結構 110 5.2.1 處理器模式 111 5.2.2 寄存器 113 5.2.3 流水線 118 5.2.4 分支預測 118 5.2.5 指令和資料對齊 119 5.2.6 跟蹤和調試 121 5.3 Cortex - A9處理器指令集 122 5.3.1 指令集基礎 122 5.3.2 資料處理操作 125 5.3.3 記憶體指令 130 5.3.4 分支 131 5.3.5 飽和算術 133 5.3.6 雜項指令 13

4 第6章 Cortex - A9片上記憶體系統結構和功能 138 6.1 L1快取記憶體 138 6.1.1 快取記憶體背景 138 6.1.2 快取記憶體的優勢和問題 139 6.1.3 記憶體層次 140 6.1.4 快取記憶體結構 140 6.1.5 緩存策略 145 6.1.6 寫和取緩衝區 147 6.1.7 緩存性能和命中速度 147 6.1.8 無效和清除緩存 147 6.1.9 一致性點和統一性點 149 6.1.10 Zynq - 7000中Cortex - A9 L1快取記憶體的特性 151 6.2 記憶體順序 153 6.2.1 普通、設備和強順序記憶體模型 154

6.2.2 記憶體屬性 155 6.2.3 記憶體屏障 155 6.3 記憶體管理單元 159 6.3.1 MMU功能描述 160 6.3.2 虛擬記憶體 161 6.3.3 轉換表 162 6.3.4 頁表入口域的描述 165 6.3.5 TLB構成 167 6.3.6 記憶體訪問順序 169 6.4 偵聽控制單元 170 6.4.1 地址過濾 171 6.4.2 SCU主設備埠 171 6.5 L2快取記憶體 171 6.5.1 互斥L2 - L1快取記憶體配置 173 6.5.2 快取記憶體替換策略 174 6.5.3 快取記憶體鎖定 174 6.5.4 使能/禁止L2快取記憶體控制器

176 6.5.5 RAM訪問延遲控制 176 6.5.6 保存緩衝區操作 176 6.5.7 在Cortex - A9和L2控制器之間的優化 177 6.5.8 預取操作 178 6.5.9 程式設計模型 179 6.6 片上記憶體 180 6.6.1 片上記憶體概述 180 6.6.2 片上記憶體功能 181 6.7 系統位址分配 186 6.7.1 位址映射 186 6.7.2 系統匯流排主設備 188 6.7.3 I/O外設 188 6.7.4 SMC記憶體 188 6.7.5 SLCR寄存器 188 6.7.6 雜項PS寄存器 189 6.7.7 CPU私有寄存器 189 第7章

Zynq - 7000 SoC的Vivado基本設計流程 190 7.1 創建新的工程 190 7.2 使用IP集成器創建處理器系統 192 7.3 生成頂層HDL並匯出設計到SDK 197 7.4 創建應用測試程式 199 7.5 設計驗證 202 7.5.1 驗證前的硬體平臺準備 202 7.5.2 設計驗證的具體實現 203 7.6 SDK調試工具的使用 205 7.6.1 打開前面的設計工程 205 7.6.2 導入工程到SDK 205 7.6.3 建立新的記憶體測試工程 205 7.6.4 運行記憶體測試工程 206 7.6.5 調試記憶體測試工程 207 7.7 SDK性能分析工具

209 第8章 Arm GPIO的原理和控制實現 213 8.1 GPIO模組原理 213 8.1.1 GPIO介面及功能 214 8.1.2 GPIO程式設計流程 217 8.1.3 I/O介面 218 8.1.4 部分寄存器說明 218 8.1.5 底層讀/寫函數說明 220 8.1.6 GPIO的API函數說明 220 8.2 Vivado環境下MIO讀/寫控制的實現 221 8.2.1 調用底層讀/寫函數編寫GPIO應用程式 221 8.2.2 調用API函數編寫控制GPIO應用程式 224 8.3 Vivado環境下EMIO讀/寫控制的實現 226 8.3.1 調用底層讀/寫函數

編寫GPIO應用程式 227 8.3.2 調用API函數編寫控制GPIO應用程式 232 第9章 Cortex - A9異常與中斷原理及實現 236 9.1 異常原理 236 9.1.1 異常類型 237 9.1.2 異常處理 241 9.1.3 其他異常控制碼 242 9.1.4 Linux異常程式流 243 9.2 中斷原理 244 9.2.1 外部插斷要求 244 9.2.2 Zynq - 7000 SoC內的中斷環境 247 9.2.3 中斷控制器的功能 248 9.3 Vivado環境下中斷系統的實現 252 9.3.1 Cortex - A9處理器中斷及異常初始化流程 252 9

.3.2 Cortex - A9 GPIO控制器初始化流程 252 9.3.3 匯出硬體設計到SDK 253 9.3.4 創建新的應用工程 253 9.3.5 運行應用工程 256 第10章 Cortex - A9計時器原理及實現 257 10.1 計時器系統架構 257 10.1.1 CPU私有計時器和看門狗計時器 257 10.1.2 全域計時器/計數器 258 10.1.3 系統級看門狗計時器 259 10.1.4 3重計時器/計數器 261 10.1.5 I/O信號 264 10.2 Vivado環境下計時器的控制實現 264 10.2.1 打開前面的設計工程 265 10.2.2

創建SDK軟體工程 265 10.2.3 運行軟體應用工程 267 第11章 Cortex - A9 DMA控制器原理及實現 268 11.1 DMA控制器架構 268 11.2 DMA控制器功能 271 11.2.1 考慮AXI交易的因素 272 11.2.2 DMA管理器 273 11.2.3 多通道資料FIFO(MFIFO) 274 11.2.4 記憶體―記憶體交易 274 11.2.5 PL外設AXI交易 274 11.2.6 PL外設請求介面 275 11.2.7 PL外設長度管理 276 11.2.8 DMAC長度管理 277 11.2.9 事件和中斷 278 11.2.10 異

常終止 278 11.2.11 安全性 280 11.2.12 IP配置選項 282 11.3 DMA控制器程式設計指南 282 11.3.1 啟動控制器 282 11.3.2 執行DMA傳輸 282 11.3.3 插斷服務常式 282 11.3.4 寄存器描述 283 11.4 DMA引擎程式設計指南 284 11.4.1 寫微代碼程式設計用於AXI交易的CCRx 284 11.4.2 記憶體到記憶體傳輸 284 11.4.3 PL外設DMA傳輸長度管理 287 11.4.4 使用一個事件重新啟動DMA通道 289 11.4.5 中斷一個處理器 289 11.4.6 指令集參考 290 11

.5 程式設計限制 291 11.6 系統功能之控制器重定配置 292 11.7 I/O介面 293 11.7.1 AXI主介面 293 11.7.2 外設請求介面 293 11.8 Vivado環境下DMA傳輸的實現 294 11.8.1 DMA控制器初始化流程 295 11.8.2 中斷控制器初始化流程 295 11.8.3 中斷服務控制碼處理流程 296 11.8.4 匯出硬體設計到SDK 296 11.8.5 創建新的應用工程 297 11.8.6 運行軟體應用工程 303 第12章 Cortex - A9安全性擴展 305 12.1 TrustZone硬體架構 305 12.1.1

多核系統的安全性擴展 307 12.1.2 普通世界和安全世界的交互 307 12.2 Zynq - 7000 APU內的TrustZone 308 12.2.1 CPU安全過渡 309 12.2.2 CP15寄存器存取控制 310 12.2.3 MMU安全性 310 12.2.4 L1緩存安全性 311 12.2.5 安全異常控制 311 12.2.6 CPU調試TrustZone存取控制 311 12.2.7 SCU寄存器存取控制 312 12.2.8 L2緩存中的TrustZone支持 312 第13章 Cortex - A9 NEON原理及實現 313 13.1 SIMD 313

13.2 NEON架構 315 13.2.1 與VFP的共性 315 13.2.2 資料類型 316 13.2.3 NEON寄存器 316 13.2.4 NEON指令集 318 13.3 NEON C編譯器和彙編器 319 13.3.1 向量化 319 13.3.2 檢測NEON 319 13.4 NEON優化庫 320 13.5 SDK工具提供的優化選項 321 13.6 使用NEON內聯函數 324 13.6.1 NEON資料類型 325 13.6.2 NEON內聯函數 325 13.7 優化NEON彙編器代碼 327 13.8 提高記憶體訪問效率 328 13.9 自動向量化實現 329

13.9.1 匯出硬體設計到SDK 329 13.9.2 創建新的應用工程 330 13.9.3 運行軟體應用工程 331 13.10 NEON彙編代碼實現 331 13.10.1 匯出硬體設計到SDK 331 13.10.2 創建新的應用工程 332 13.10.3 運行軟體應用工程 333 第14章 Cortex - A9外設模組結構及功能 334 14.1 DDR記憶體控制器 334 14.1.1 DDR記憶體控制器介面及功能 335 14.1.2 AXI記憶體介面 337 14.1.3 DDR核和交易調度器 338 14.1.4 DDRC仲裁 338 14.1.5 DDR記憶體控制

器PHY 340 14.1.6 DDR初始化和標定 340 14.1.7 改錯碼 341 14.2 靜態記憶體控制器 342 14.2.1 靜態記憶體控制器介面及功能 343 14.2.2 靜態記憶體控制器和記憶體的信號連接 344 14.3 四 - SPI Flash控制器 345 14.3.1 四 - SPI Flash控制器功能 347 14.3.2 四 - SPI Flash控制器回饋時鐘 349 14.3.3 四 - SPI Flash控制器介面 349 14.4 SD/SDIO外設控制器 351 14.4.1 SD/SDIO控制器功能 352 14.4.2 SD/SDIO控制器傳輸

協議 353 14.4.3 SD/SDIO控制器埠信號連接 356 14.5 USB主機、設備和OTG控制器 356 14.5.1 USB控制器介面及功能 358 14.5.2 USB主機操作模式 361 14.5.3 USB設備操作模式 363 14.5.4 USB OTG操作模式 365 14.6 吉比特乙太網控制器 365 14.6.1 吉比特乙太網控制器介面及功能 367 14.6.2 吉比特乙太網控制器介面程式設計嚮導 368 14.6.3 吉比特乙太網控制器介面信號連接 372 14.7 SPI控制器 373 14.7.1 SPI控制器的介面及功能 374 14.7.2 SPI控制

器時鐘設置規則 376 14.8 CAN控制器 376 14.8.1 CAN控制器介面及功能 377 14.8.2 CAN控制器操作模式 379 14.8.3 CAN控制器消息保存 380 14.8.4 CAN控制器接收篩檢程式 381 14.8.5 CAN控制器程式設計模型 382 14.9 UART控制器 383 14.10 I2C控制器 387 14.10.1 I2C速度控制邏輯 388 14.10.2 I2C控制器的功能和工作模式 388 14.11 XADC轉換器介面 390 14.11.1 XADC轉換器介面及功能 391 14.11.2 XADC命令格式 392 14.11.3

供電感測器報警 392 14.12 PCI - E介面 393 第15章 Zynq - 7000內的可程式設計邏輯資源 395 15.1 可程式設計邏輯資源概述 395 15.2 可程式設計邏輯資源功能 396 15.2.1 CLB、Slice和LUT 396 15.2.2 時鐘管理 396 15.2.3 塊RAM 398 15.2.4 數位信號處理 - DSP Slice 398 15.2.5 輸入/輸出 399 15.2.6 低功耗串列收發器 400 15.2.7 PCI - E模組 401 15.2.8 XADC(類比 - 數位轉換器) 402 15.2.9 配置 402 第16章

Zynq - 7000內的互聯結構 404 16.1 系統互聯架構 404 16.1.1 互聯模組及功能 404 16.1.2 資料路徑 406 16.1.3 時鐘域 407 16.1.4 連線性 408 16.1.5 AXI ID 409 16.1.6 寄存器概述 409 16.2 服務品質 410 16.2.1 基本仲裁 410 16.2.2 不錯QoS 410 16.2.3 DDR埠仲裁 411 16.3 AXI_HP介面 411 16.3.1 AXI_HP介面結構及特點 411 16.3.2 介面資料寬度 415 16.3.3 交易類型 416 16.3.4 命令交替和重新排序 416

16.3.5 性能優化總結 416 16.4 AXI_ACP介面 417 16.5 AXI_GP介面 418 16.6 AXI信號總結 418 16.7 PL介面選擇 422 16.7.1 使用通用主設備埠的Cortex - A9 423 16.7.2 通過通用主設備的PS DMA控制器(DMAC) 423 16.7.3 通過高性能介面的PL DMA 426 16.7.4 通過AXI ACP的PL DMA 426 16.7.5 通過通用AXI從(GP)的PL DMA 426 第17章 Zynq - 7000 SoC內定制簡單AXI - Lite IP 429 17.1 設計原理 429 1

7.2 定制AXI - Lite IP 429 17.2.1 創建定制IP範本 429 17.2.2 修改定制IP設計範本 432 17.2.3 使用IP封裝器封裝外設 436 17.3 打開並添加IP到設計中 440 17.3.1 打開工程和修改設置 440 17.3.2 添加定制IP到設計 442 17.3.3 添加XDC約束檔 445 17.4 匯出硬體到SDK 446 17.5 建立和驗證軟體應用工程 446 17.5.1 建立應用工程 447 17.5.2 下載硬體位元流檔到FPGA 449 17.5.3 運行應用工程 450 第18章 Zynq - 7000 SoC內定制複雜AX

I Lite IP 451 18.1 設計原理 451 18.1.1 VGA IP核的設計原理 451 18.1.2 移位暫存器IP核的設計原理 453 18.2 定制VGA IP核 454 18.2.1 創建定制VGA IP範本 454 18.2.2 修改定制VGA IP範本 455 18.2.3 使用IP封裝器封裝VGA IP 459 18.3 定制移位暫存器IP核 460 18.3.1 創建定制SHIFTER IP範本 460 18.3.2 修改定制SHIFTER IP範本 462 18.3.3 使用IP封裝器封裝SHIFTER IP 463 18.4 打開並添加IP到設計中 464 1

8.4.1 打開工程和修改設置 464 18.4.2 添加定制IP到設計 466 18.4.3 添加XDC約束檔 470 18.5 匯出硬體到SDK 471 18.6 建立和驗證軟體工程 472 18.6.1 建立應用工程 472 18.6.2 下載硬體位元流檔到FPGA 476 18.6.3 運行應用工程 477 第19章 Zynq - 7000 AXI HP資料傳輸原理及實現 478 19.1 設計原理 478 19.2 構建硬體系統 479 19.2.1 打開工程和修改設置 479 19.2.2 添加並連接AXI DMA IP核 480 19.2.3 添加並連接FIFO IP核 482

19.2.4 連接DMA中斷到PS 485 19.2.5 驗證和建立設計 487 19.3 建立和驗證軟體工程 487 19.3.1 匯出硬體到SDK 488 19.3.2 創建軟體應用工程 488 19.3.3 下載硬體位元流檔到FPGA 497 19.3.4 運行應用工程 497 第20章 Zynq - 7000 ACP資料傳輸原理及實現 499 20.1 設計原理 499 20.2 打開前面的設計工程 499 20.3 配置PS埠 499 20.4 添加並連接IP到設計 500 20.4.1 添加IP到設計 501 20.4.2 系統連接 501 20.4.3 分配位址空間 502

20.5 使用SDK設計和實現應用工程 504 20.5.1 創建新的軟體應用工程 504 20.5.2 導入應用程式 504 20.5.3 下載硬體位元流檔到FPGA 507 20.5.4 運行應用工程 508 第21章 Zynq - 7000軟體和硬體協同調試原理及實現 509 21.1 設計目標 509 21.2 ILA核原理 510 21.2.1 ILA觸發器輸入邏輯 510 21.2.2 多觸發器埠的使用 510 21.2.3 使用觸發器和存儲限制條件 510 21.2.4 ILA觸發器輸出邏輯 512 21.2.5 ILA資料捕獲邏輯 512 21.2.6 ILA控制與狀態邏輯

513 21.3 VIO核原理 513 21.4 構建協同調試硬體系統 514 21.4.1 打開前面的設計工程 514 21.4.2 添加定制IP 514 21.4.3 添加ILA和VIO核 515 21.4.4 標記和分配調試網路 516 21.5 生成軟體工程 518 21.6 S/H協同調試 520 第22章 Zynq - 7000 SoC啟動和配置原理及實現 527 22.1 Zynq - 7000 SoC啟動過程 527 22.2 Zynq - 7000 SoC啟動要求 527 22.2.1 供電要求 528 22.2.2 時鐘要求 528 22.2.3 復位要求 528 22.

2.4 模式引腳 528 22.3 Zynq - 7000 SoC內的BootROM 530 22.3.1 BootROM特性 530 22.3.2 BootROM頭部 531 22.3.3 啟動設備 535 22.3.4 BootROM多啟動和開機磁碟分割查找 538 22.3.5 調試狀態 539 22.3.6 BootROM後狀態 540 22.4 Zynq - 7000 SoC器件配置介面 543 22.4.1 描述功能 544 22.4.2 器件配置流程 545 22.4.3 配置PL 549 22.4.4 寄存器概述 550 22.5 生成SD卡鏡像檔並啟動 551 22.5.1

SD卡與XC7Z020介面設計 551 22.5.2 打開前面的設計工程 552 22.5.3 創建級啟動引導 553 22.5.4 創建SD卡啟動鏡像 553 22.5.5 從SD卡啟動引導系統 555 22.6 生成QSPI Flash鏡像並啟動 556 22.6.1 QSPI Flash介面 556 22.6.2 創建QSPI Flash鏡像 557 22.6.3 從QSPI Flash啟動引導系統 558 22.7 Cortex - A9雙核系統的配置和運行 558 22.7.1 構建雙核硬體系統工程 558 22.7.2 添加並互聯IP核 559 22.7.3 匯出硬體設計到SDK中

561 22.7.4 設置板級包支援路徑 561 22.7.5 建立FSBL應用工程 562 22.7.6 建立CPU0應用工程 562 22.7.7 建立CPU1板級支持包 566 22.7.8 建立CPU1應用工程 566 22.7.9 創建SD卡鏡像文件 570 22.7.10 雙核系統運行和測試 571 22.7.11 雙核系統的調試 571 第23章 Zynq - 7000 SoC內XADC原理及實現 574 23.1 ADC轉換器介面結構 574 23.2 ADC轉換器功能 575 23.2.1 XADC的命令格式 576 23.2.3 供電感測器報警 576 23.3 XAD

C IP核結構及信號 577 23.4 開發平臺上的XADC介面 578 23.5 在Zynq - 7000 SoC內構建數模混合系統 579 23.5.1 打開前面的設計工程 579 23.5.2 配置PS埠 579 23.5.3 添加並連接XADC IP到設計 580 23.5.4 查看位址空間 582 23.5.5 添加用戶約束檔 583 23.5.6 設計處理 583 23.6 使用SDK設計和實現應用工程 584 23.6.1 生成新的應用工程 584 23.6.2 導入應用程式 585 23.6.3 下載硬體位元流檔到FPGA 591 23.6.4 運行應用工程 591 第24章

Linux開發環境的構建 592 24.1 構建虛擬機器環境 592 24.2 安裝和啟動Ubuntu 14.04客戶機作業系統 595 24.2.1 新添加兩個磁片 595 24.2.2 設置CD/DVD(SATA) 596 24.2.3 安裝Ubuntu 14.04 597 24.2.4 更改Ubuntu 14.04作業系統啟動設備 600 24.2.5 啟動Ubuntu 14.04作業系統 600 24.2.6 添加搜索連結資源 600 24.3 安裝FTP工具 601 24.3.1 Windows作業系統下LeapFTP安裝 601 24.3.2 Ubuntu作業系統環境下FTP安裝

602 24.4 安裝和啟動SSH和GIT組件 603 24.4.1 安裝和啟動SSH組件 603 24.4.2 安裝和啟動GIT組件 604 24.5 安裝交叉編譯器環境 604 24.5.1 安裝32位支援工具包 604 24.5.2 安裝和設置SDK 2015.4工具 605 24.6 安裝和配置Qt集成開發工具 606 24.6.1 Qt集成開發工具功能 606 24.6.2 構建PC平臺Qt環境 607 24.6.3 構建Arm平臺Qt環境 613 第25章 構建Zynq - 7000 SoC內Ubuntu硬體運行環境 622 25.1 建立新的設計工程 622 25.2 添加I

P核路徑 623 25.3 構建硬體系統 623 25.3.1 添加和配置ZYNQ7 IP 624 25.3.2 添加和配置VDMA IP核 625 25.3.3 添加和配置AXI Display Controller IP核 626 25.3.4 添加和配置HDMI Transmitter IP核 627 25.3.5 添加和配置VGA IP核 627 25.3.6 連接用戶自訂IP核 627 25.3.7 添加和配置Processor System Reset IP核 630 25.3.8 連接系統剩餘部分 630 25.4 添加設計約束檔 632 25.5 匯出硬體檔 633 第26章

構建Zynq - 7000 SoC內Ubuntu軟體運行環境 635 26.1 u - boot原理及實現 635 26.1.1 下載u - boot源碼 635 26.1.2 u - boot檔結構 636 26.1.3 u - boot工作模式 637 26.1.4 u - boot啟動過程 637 26.1.5 編譯u - boot 650 26.1.6 連結指令檔結構 652 26.2 內核結構及編譯 654 26.2.1 內核結構 654 26.2.2 下載Linux內核源碼 655 26.2.3 內核版本 655 26.2.4 內核系統組態 655 26.2.5 Bootload

er 啟動過程 658 26.2.6 Linux內核啟動過程 660 26.2.7 編譯內核 662 26.3 設備樹原理及實現 662 26.3.1 設備樹概述 662 26.3.2 設備樹資料格式 663 26.3.3 設備樹的編譯 664 26.4 檔案系統原理及下載 664 26.5 生成Ubuntu啟動鏡像 665 26.5.1 生成FSBL檔 666 26.5.2 生成BOOT.bin開機檔案 666 26.5.3 製作SD卡 668 26.5.4 複製BOOT. bin文件 670 26.5.5 複製編譯後的內核檔 670 26.5.6 複製編譯後的設備樹檔 671 26.5.7

複製檔案系統 671 26.6 啟動Ubuntu作業系統 672 第27章 Linux環境下簡單字元設備驅動程式的開發 674 27.1 驅動程式的必要性 674 27.2 Linux作業系統下的設備檔案類型 675 27.3 Linux驅動的開發流程 676 27.4 驅動程式的結構框架 676 27.4.1 載入和卸載函數模組 676 27.4.2 字元設備中重要的資料結構和函數 677 27.5 編寫makefile檔 683 27.6 編譯驅動程式 684 27.7 編寫測試程式 685 27.8 運行測試程式 686 第28章 Linux環境下包含中斷機制驅動程式的開發 688

28.1 設計原理 688 28.2 編寫包含中斷處理的驅動代碼 688 28.2.1 驅動程式標頭檔 688 28.2.2 驅動的載入和卸載函數 689 28.2.3 file_operations初始化 691 28.3 編寫makefile檔 691 28.4 編譯驅動程式 692 28.5 測試驅動程式 693 第29章 Linux環境下影像處理系統的構建 694 29.1 系統整體架構和功能 694 29.2 OV5640攝像頭性能 695 29.2.1 攝像頭捕獲模組的硬體 696 29.2.2 SCCB介面規範 696 29.2.3 寫攝像頭模組寄存器操作 697 29.2.

4 讀攝像頭模組寄存器操作 698 29.2.5 攝像頭初始化流程 700 29.3 Vivado HLS實現拉普拉斯運算元濾波演算法的設計 701 29.3.1 Vivado HLS工具的性能和優勢 701 29.3.2 拉普拉斯演算法與HDL之間的映射 703 29.4 影像處理系統的整體構建 706 29.5 影像處理系統軟體的設計 708 29.5.1 Ubuntu桌面系統的構建 708 29.5.2 Qt影像處理程式的開發 708 29.6 內嵌影像處理系統測試 710 第30章 Zynq-7000 SoC上構建和實現Python應用 712 30.1 設計所需的硬體環境 712

30.2 構建PetaLinux開發環境 712 30.2.1 PetaLinx開發環境概述 712 30.2.2 安裝32位庫 714 30.2.3 安裝並測試tftp伺服器 714 30.2.4 下載並安裝PetaLinux 715 30.3 構建嵌入式系統硬體 717 30.3.1 下載並安裝Vivado 2018.2整合式開發環境 717 30.3.2 添加板級支援包檔 717 30.3.3 建立新的Vivado工程 717 30.3.4 構建硬體系統 718 30.4 構建嵌入式Python開發環境 721 30.5 構建PC端Python開發環境 723 30.6 伺服器和用戶端P

ython的開發 724 30.6.1 伺服器端Python的開發 725 30.6.2 用戶端Python的開發 726 30.7 設計驗證 728 30.7.1 啟動伺服器程式 728 30.7.2 啟動用戶端程式 729

臺灣本土燃煤電廠及汽柴油車排放尾氣中細懸浮微粒組成特徵及吸入風險評估

為了解決gp125引擎的問題,作者吳亞璇 這樣論述:

細懸浮微粒(PM2.5)為全球主要關注之空氣汙染物,其粒徑小至足以穿透呼吸系統並深達肺部,由於附著在PM2.5上的成分多對健康有危害,如多環芳香烴(Polycyclic Aromatic Hydrocarbons, PAHs)、水溶性陰陽離子及金屬元素等,而臺灣PM2.5之主要來源依據環保署空氣汙染排放清冊中可得為逸散、固定源及移動源,而固定源中主要以之電力業及移動源之汽柴油車排放貢獻較高等,因此本研究主要針對固定源(北、中和南部電廠)及移動源(汽柴油引擎高速及惰轉) PM2.5排放濃度及其微粒組成中PAHs、水溶性陰陽離子及金屬元素之分布進行研究,並使用ISCST3模擬結果選擇周界大氣受影

響之受體點,並針對北部及中部空品區之測站受汙染之來源進行正矩陣因子法(Positive Matrix Factor, PMF)解析,進而評估測站地區居民暴露大氣中PAHs之吸入性終生致癌增量風險(Incremental Lifetime Cancer Risk, ILCR)。 研究結果顯示;排放源排放PM2.5濃度於固定源中最高的為南部電廠(8.35±2.60 mg/m3),移動源則為柴油引擎高速運轉(4.67 mg/m3);北部電廠( 332 ng BaPeq/m3) 則以PAHs排放濃度最高,移動源為柴油引擎惰轉(751 ng BaPeq/m3);排放源中PAHs之分布,於電廠中多環芳

香烴主要物種為高分子量中BghiP、DBA及BbF,柴油引擎惰轉及高速主要為高分子量中BghiP及BaP,而汽油引擎惰轉及高速則為低分子量中PA、Py、FL及Flu。排放源中水溶性陰陽離子之分布,電廠主要離子皆包含SO42-,汽柴油引擎高速為NO2-、Ca2+、PO43-及SO42-,汽柴油引擎惰轉為Na+、NO3-、PO43-及Cl-;排放源中金屬元素之分布,電廠主要金屬皆包含K及Na,汽柴油引擎高速為Al、Ca、Mg及Fe,汽柴油引擎惰轉為Na、Ca及Mg。 周界大氣各測站中PM2.5濃度最高為中部都會測站(U2, 35.4±11.2 μg/m3),最低為山區背景測站(B2, 8.7

5 μg/m3);周界大氣各測站中PAHs毒性當量(BaPeq)濃度最高為東北季風時期的北部郊區測站(R1, 0.709±0.429 ng BaPeq/m3),最低為背景山區測站(B2, 0.011 ng BaPeq/m3),周界各測站中PAHs分布主要物種皆為4環物種之FL和Pyr,表示來源與汽油車有關。本研究北部及中部測站PM2.5中水溶性陰陽離子皆包含NH4+,其表示與機動車輛排放有關;而北部及中部空品區周界大氣PM2.5中之金屬元素主要分布大致相似,主要為Al、Fe、Na、K及Ca,以富集因子計算結果顯示Ni、Zn、Mo、Cd、Sn、Sb、Tl、Pb、Cr、As、Se及Ge之金屬來源為

人為汙染,而Cu及Pr等金屬來源為地殼元素。使用PMF進行解析本研究之周界大氣測站PAHs之汙染來源,解析結果得出4種主要汙染貢獻來源,分別為交通車輛之柴油引擎(11.5%)、交通車輛之汽油引擎 (25.7%)、境外長程傳輸事件 (27.9%)及燃煤電廠(34.9%);並解析出金屬之4種主要汙染貢獻來源,分別為北部燃煤電廠及車輛引擎惰轉(11.1%)、境外長程傳輸事件(16.5%)、南部燃煤電廠 (18.3%)及中部燃煤電廠 (54.1%)。本研究評估周界大氣測站地區居民暴露於PAHs之吸入性終生致癌增量風險(ILCR),R1測站(6.17±3.73x 10-5)於東北季風時期之風險值明顯增加

,導致其平均風險值上升,並高於所有測站,而本研究之北部(0.967~11.6x 10-5)及中部(1.39~5.10x 10-5)空品區暴露風險皆介於美國環保署規範可容忍之限值 (10-6~10-4)。